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ABSTRACT

Location information is of extreme importance in every walk of life ranging

from commercial applications such as location based advertising and location aware

next generation communication networks such as the 5G networks to security based

applications like threat localization and E-911 calling. In indoor and dense urban en-

vironments plagued by multipath effects there is usually a Non Line of Sight (NLOS)

scenario preventing GPS based localization. Wireless localization using sensor net-

works provides a cost effective and accurate solution to the wireless source localization

problem. Certain sensor geometries show significantly poor performance even in low

noise scenarios when triangulation based localization methods are used. This brings

the need for the design of an optimum sensor placement scheme for better perfor-

mance.

The optimum sensor placement optimizes the underlying Fisher Information

Matrix(FIM) . This thesis will present a class of canonical optimum sensor placements

that produce the optimum FIM for N dimensional source localization (N ≥ 2) for a

case where the source location has a radially symmetric probability density function

within an N dimensional sphere and the sensors are all on or outside the surface

of a concentric outer N dimensional sphere. While the canonical solution that we

designed for the 2D problem represents optimum spherical codes, the study of 3 or

higher dimensional design provides great insights into the design of measurement

matrices with equal norm columns that have the smallest possible condition number.

v
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Such matrices are of great importance in compressed sensing based applications.

This thesis also presents an optimum sensing matrix design for energy efficient

source localization in 2D. Specifically, the results relate to the worst case scenario

when the minimum number of sensors are active in the sensor network. We also

propose a distributed control law that guides the motion of the sensors on the cir-

cumference of the outer circle to achieve the optimum sensor placement with minimum

communication overhead.

The design of equal norm column sensing matrices has a variety of other ap-

plications apart from the optimum sensor placement for N-dimensional source lo-

calization. One such application is fourier analysis in Magnetic Resonance Imaging

(MRI). Depending on the method used to acquire the MR image, one can choose

an appropriate transform domain that transforms the MR image into a sparse image

that is compressible. Some such transform domains include Wavelet Transform and

Fourier Transform. The inherent sparsity of the MR images in an appropriately cho-

sen transform domain, motivates us to provide a method for designing a compressive

sensing measurement matrix by choosing a subset of rows from the Discrete Fourier

Transform (DFT) matrix. This thesis uses the spark of the matrix as the optimality

criterion. The spark of a matrix is defined as the smallest number of linearly de-

pendent columns of the matrix. The objective is to select a subset of rows from the

DFT matrix in order to achieve maximum spark. The design procedure leads us to

an interesting study of coprime conditions on the row indices chosen in relation to

the size of the DFT matrix.

vi
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PUBLIC ABSTRACT

Location information is of extreme importance in every walk of life ranging

from commercial applications such as location based advertising and location aware

next generation communication networks such as the 5G networks to security based

applications like threat localization and E-911 calling. Locating a source of threat or

a missing person using wireless signals transmitted from the source are examples of

daily life situations that critically rely on location information. In indoor and dense

urban environments the wireless signals are reflected/scattered by the obstacles such

as buildings and trees. This degrades the quality of the wireless signal from the source

that we are looking for. This negatively impacts the accuracy of the localization

process. Thus one needs to understand the wireless environment and smartly deploy

the sensors at appropriate places in order to get an accurate location estimate. In

this thesis, the design of the optimum sensor deployment is modeled as the design of

matrices with the columns defined as the sensor locations such that these matrices

have certain optimum matrix properties.

Another interesting application where these matrix design techniques can be

used is Magnetic Resonance Imaging. The motivation to study matrix design tech-

niques for MRI comes from the fact that we would like to make few acquisitions but

yet be able to understand the missing portions of the data. We would like to design a

matrix which has optimum properties such that the measurement process of the MRI

modeled by this matrix retains all the important information required.

vii
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1

CHAPTER 1
INTRODUCTION

The objective of this dissertation is to design sensing matrices for two broad

applications.

1. Optimum sensor placement for source localization.

2. Measurement matrix for compressive sensing.

In the first part of the dissertation the primary focus is on designing an opti-

mum sensor node geometry that optimizes the Fisher Information Matrix associated

with the N ≥ 2 dimensional source location estimate by using the Received Signal

Strength (RSS) measurements. The canonical solutions that we provide for optimum

sensor placement problem for N dimensional localization of a single source provide

great insights into the design of sensing matrices with equal norm columns that have

some interesting properties pertaining to the condition number. Section 1.1 gives an

overview of the related literature and applications of the problem. Section 1.2 and 1.3

present the precise mathematical objectives of the optimum sensor placement design.

In the second part of the dissertation the focus is on the design of a compressive

sensing measurement matrix for Magnetic Resonance Imaging (MRI). The inherent

sparsity of the MR images in an appropriately chosen transform domain, motivates

this objectives of the thesis which is to provide a method for designing a compressive

sensing measurement matrix for MRI by choosing a subset of rows from the Discrete

Fourier Transform (DFT) matrix. The objective is to choose a subset of rows of
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2

the DFT matrix, such that the chosen submatrix has the maximum spark. Spark

is defined the smallest number of linearly dependent columns in a matrix. Section

1.2 provides a brief introduction to Compressive Sensing and Section 1.3 presents the

specific mathematical definition of the problem.

1.1 Optimum Sensor Placement for Source Localization

In the recent past, research in location based services has gained momentum

with smart location aware devices. The next generation communication networks

such 5G are being designed to derive benefits from location information [1]. Apart

from an attractive commerce surrounding the location based services, there are several

military applications that require highly accurate location information.

Though GPS offers good location estimates when there is Line of Sight commu-

nication with the GPS satellites, in indoor and dense urban environments filled with

obstacles and multipath effects there is usually a Non-Line-of-Sight (NLOS) scenario.

In such cases wireless localization using sensor networks provides a cost effective and

accurate solution to the wireless source localization problem.

Specifically in applications where the source poses a threat to life, wireless

sensor technology becomes almost indispensable. Literature in [2], [3], [4],[5], [6], [7]

and [8], [9], [10] provide several applications of wireless source localization and the

corresponding optimum sensor placement. Other applications include location based

advertising, disaster management, indoor navigation and positioning, packet rout-

ing in mobile networks, chemical and biological source tracking, ubiquitous comput-
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ing,wearable body area networks, habitat monitoring, presence sensing based lighting

systems, animal tracking to list a few. Besides these commercial and security based

applications, future wireless sensor technology promise easy and safe navigation to

people with disabilities [11].

In source localization using wireless sensor networks, groups of sensors receive

signals from the source and wirelessly communicate their relative position information

either in a centralized or distributed fashion to spot the source [12], [13], [14], [15].

Using the sensed data from the sensors, the sensors collectively estimate the source

location.

Section 1.1.1 provides answer to the question of how we acquire location in-

formation of the source.

1.1.1 Distance Measurement Techniques in Wireless Sensor Networks

Classical techniques used for acquiring the location information include the

range-based techniques and range-free localization techniques. The range based tech-

niques use signal strength or the time of arrival of the received signal to estimate the

true node to node distance. Though range-free localization techniques require lesser

hardware and are economical, in applications that are sensitive to the accuracy of

the estimate of the location and require absolute geolocation, range based techniques

offer higher accuracy [16], [17].

Range based distance measurement techniques include

1. Received Signal Strength Measurements
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2. Time Difference of Arrival Measurements

This thesis focuses on the use of the received signal strength model to acquire

the relative position information of the source.

1.1.1.1 Received Signal Strength Based Distance Measurements

Suppose A is the strength of the signal emitted by the wireless source at a unit

distance from the source and d is the distance between the source and the receiver

(sensor), then the received signal strength s at the receiver is modeled using an inverse

relation given by

s =
A

dβ
(1.1)

where β is the path loss co-efficient. Hence in a sensor network with n sensors receiving

signals from a source, if y ∈ RN where N = 2 or 3 is the source location and xi ∈ RN

is the location of the i−th sensor node, then the received signal strength at this i−th

sensor node is given by

si =
A

||xi − y||β
. (1.2)

Throughout this work, the radio environment is assumed to be plagued by log

normal shadowing [18]. Thus from (1.2),

ln si = lnA− βln||xi − y||+ wi, (1.3)

where wi is a zero mean uncorrelated gaussian random variable with variance σ2. The
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log normal shadowing model takes care of the uncertainty involved in the estimation

of the path loss parameter β and the multipath effects in the environment.

Section 1.1.2 addresses the need for the design of an optimum sensor geometry

in the context of source localization.

1.1.2 The Importance of Sensor Geometry in Source Localization

The sensor geometry plays a significant role in determining the accuracy of

the source location estimate [19], [20], [21]. This brings the need to find an optimal

configuration for the sensor placement relative to the source. The key question here

is why not use triangulation methods to localize a source? In general, 3 non-collinear

sensor nodes with known location can localize a source in two dimensions and 4 non-

coplanar sensors can do the job in three dimensions. However in environments with

multipath effects and obstacles, triangulation methods perform poorly i.e. produce

high localization errors. Consider the following example in [22] which asserts that

certain sensor geometries produce large localization errors even in the presence of

very small noise when linear localization algorithms such as triangulation are used.

Suppose there are three sensor nodes at [0, 0]T , [43, 7]T and [47, 0]T . Suppose

also that the source is at y = [17.9719,−29.3227]T . The distances of the source at y

from each sensor node are 34.392 from the first node, 44.1106 from the second node

and 41.2608 from the third node. Now, let us suppose that the distance measurements

are perturbed by noise. Let the distances of the source node from the sensor nodes

after perturbation from noise be 35, 42 and 43 respectively. If these perturbed dis-
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tance estimates are used to estimate the source location, then the linear algorithm i.e

the triangulation algorithm estimates the source to be at [16, 8617,−6.5076]T . This

illustrates that triangulation shows a significantly poor performance even in low noise

situations. This brings the need to find an optimal configuration for the sensor place-

ment that takes into account the cluttered environment to produce the best possible

accuracy in the location estimation process.

The sensor placement strategy varies with the

1. application [23] - [24],

2. environment in which the sensors are deployed and

3. method used for acquiring data from the source.

For example, in robotics the sensors should be placed such that the robot best

perceives the physical world. Similarly, the sensor configuration for monitoring the

health of structures needs to give best information of the overall health of the struc-

ture. The sensor placement algorithm however is significantly different when there is

only probabilistic information of the source location and the optimum configuration is

different for different distributions of the source location. In applications like finding

a microphone in a conference room, mine sweeping, presence sensing based lighting

control, the location of the source is known to be constrained in a particular geo-

graphic region. In certain applications, the source may be more likely to be present

at a point in the region than the others. In such cases the source location distribu-

tion is modeled accordingly by assigning weights of importance to those locations to

improve accuracy.
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Specifically, the work in chapter 2 focuses on placing the sensors on or outside

the surface of a N dimensional sphere in order to locate a single source given that

the region where the source is expected to be present is known to be a concentric

N dimensional sphere of a smaller radius. The sensor configuration is subject to the

constraint that the sensors need to be placed at a certain distance from the source.

This constraint is of interest in applications where the source poses a threat like in

the case of localizing the source of fire or to locate a bomb or a terror threat in public

places. It is also a topic of interest for applications like seamless wireless connectivity

using high altitude long endurance drones and satellites.

1.1.3 The Fisher Information Matrix

It is well known that [25] the error variance of unbiased estimators is lower

bounded by the Cramer Rao Lower Bound (CRLB) matrix. Further asymptotically

the maximum likelihood estimator approaches this bound. Thus one measure of how

good an estimate is, is provided by maximizing the inverse of the CRLB matrix also

known as the Fisher Information Matrix (FIM).

Traditional optimal design experiments aim at

1. Minimization of the trace of the inverse of the FIM

2. Maximization of the determinant of the underlying FIM

3. Maximization of the minimum eigenvalue of the underlying FIM [26], [27].

To establish the problem statement, we first find the Fisher Information Matrix

(FIM) corresponding to the received signals at the sensors in two cases.
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1. The source location y is deterministic but unknown

2. The source location y is a random vector

Case (1) is the Source Monitoring problem [28] and case (2) corresponds to the

Source Localization problem [29]. In the case of source monitoring, it is assumed that

the source location has already been estimated and that the sensors are continuously

estimating the location of the source from a safe distance.

Define S = [s1, s2, ...sn] and W = [ln s1− lnA−β ln ||x1−y||, ...... ln sn− lnA−

β ln ||xn − y||]. As the wi’s are mutually orthogonal, the probability density function

of S|y is given by

p(S|y) =
1

(2π)
n
2

1

|Σ| 12
exp

(
− 1

2
WΣ−1W T

)
(1.4)

where Σ = E[W TW ]. However, as the wi’s are mutually uncorrelated and thus

mutually orthogonal (since E(wi) = 0 ∀i ∈ {1, 2, ..., N}) we have

E[W TW ] = σ2I. (1.5)

Thus

p(S|y) =
1

(2π)
n
2

1

σ
exp

(
− 1

2σ2
WW T

)
(1.6)

⇐⇒ ln ps|y(S|y) = −n
2

ln(2πσ2)− 1

2σ2
WW T . (1.7)
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Now,

∂

∂y
ln ps|y(S|y) = 0− 1

2σ2

∂

∂y
(WW T ) =

1

σ2

∂

∂y
(W ), (1.8)

1

σ2

∂

∂y
(W ) =

1

σ2
BW, (1.9)

where

B =

[
− β x1 − y
||x1 − y||2

, ......,−β xn − y
||xn − y||2

]
. (1.10)

Now define F given by [30]

F = E[{ ∂
∂y

ln ps|y(S|y)}{ ∂
∂y

ln ps|y(S|y)}T ] =
1

σ4
BE[W TW ]BT (1.11)

Thus (1.11) becomes

F =
1

σ2
BBT . (1.12)

On simplification we get,

F =
β2

σ2

n∑
i=1

(xi − y)(xi − y)T

||xi − y||4
. (1.13)

Fisher Information Matrix in the Source Monitoring Problem

The FIM in the source monitoring case is given by

FIM = F =
β2

σ2

n∑
i=1

(xi − y)(xi − y)T

||xi − y||4
. (1.14)

Fisher Information Matrix in the Source Localization Problem
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The FIM in this case is given by

FIM = Ey[F ] =
β2

σ2
Ey

[ n∑
i=1

(xi − y)(xi − y)T

||xi − y||4

]
. (1.15)

Thus the optimum sensing matrix design problem is that of design an optimum

sensor placement that achieves the Optimal FIM. The specific mathematical problem

formulation is presented in Section 1.3.

Section 1.2 discusses the optimum sensing matrix design in the context of

compressive sensing for MRI.

1.2 Measurement matrix design for Compressed Sensing in MRI

Compressive sensing is a non-adaptive linear projection mechanism that sam-

ples signals at a lower rate thant the Nyquist sampling rate. Recently, the compressive

sensing problem has seen a wide variety of applications that include pattern recog-

nition, machine learning, locality selective hashing, processing radar data, sensor

networks, Magnetic Resonance Imaging (MRI), spectrum sensing in cognitive radio

applications, channel estimation and error correcting codes [31], [32].

A signal N×1 is said to be “k-sparse” if it can be written as a linear combina-

tion of k <<< n basis vectors. In other words, a signal is k-sparse if N − k elements

of the signal are zero [32].

For the problem set up, consider a k-sparse N ×1 vector x. Let A be a M ×N

(M < N) measurement or sensing matrix. Then the output of the measurement

process defined by A is a M × 1 vector y given by
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y = Ax. (1.16)

The measurement matrix A should be such that given k, every k− sparse N×1

vector x can be recovered from the observed M × 1 vector y. The recovery of x is a

constrained optimization problem, where the vector with the smallest support that

satisfies the data consistency is estimated. The support of a sparse vector x denoted

by supp(x) is defined as the set of indices of the non-zero elements of the vector x i.e.

supp(x) = {i|xi 6= 0} (1.17)

where xi is the i−th element of the vector x. This method of recovery is often referred

to as `0 recovery. The necessary and sufficient conditions to recover an arbitrary k-

sparse vector using `0 recovery is now well-known to be spark(A) > 2k, [33, 34]. The

spark of A is the smallest number of linearly dependent columns in A [33, 34]. The `0

recovery is a combinatorial search. Thus one would like design a measurement matrix

with the largest spark i.e one would like to design a measurement matrix A such that

spark(A) = M + 1. The specific aim in this context is discussed in Section 1.3.

1.3 Aim

The aim of this thesis is four fold.

1. This dissertation develops a canonical solution to the optimum sensor placement

problem for N-D source localization when the source location has a spherically
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symmetric probability density function with finite support.

2. Given the optimum sensor placement for 2 −D source localization, this thesis

develops a distributed control law that guides the motion of the sensors to

achieve the optimum sensor placement.

3. The third objective of the dissertation is to develop a optimum sensor placement

scheme when only a subset of sensors in the network are actively participating

in the process of 2-D source location monitoring. Particularly, the design aims

at the specific case when only 3 sensors in the network are active. The objective

is to achieve the best worst case performance.

4. The fourth objective of the dissertation is to design a measurement matrix for

compressed sensing in MRI. The measurement matrix is a submatrix formed by

choosing L < N rows of the N ×N Discrete Fourier Transform (DFT) matrix

such that the designed submatrix has the maximum possible spark of L+ 1.

1.3.1 Optimum Sensor Placement for Source Localization

In this work, it is assumed that the source location is distributed in a ball of

radius r1, centered at the origin,

B(r1) = {a ∈ <N |||a||2 ≤ r1}, (1.18)
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and that the distribution is radially symmetric. Thus the prior probability density

function (pdf) of y is given by, [35],

fY (y) =

{
g(||y||) for y ∈ B(r1)
0 else

. (1.19)

Given the probability density function of the source location of the form in the

above equation, the specific problem that this thesis addresses is to achieve optimality

on the FIM matrix in (1.20). For convenience, the FIM equation is

FIM = Ey[F ] =
β2

σ2
Ey

[ n∑
i=1

(xi − y)(xi − y)T

||xi − y||4

]
. (1.20)

As the source is hazardous, we assume that sensors cannot be too close to it.

Specifically they must obey

||xi||2 ≥ r2 > r1. (1.21)

The problem statements thus assume the following mathematical definition.

Problem 1: For a given integers n ≥ N + 1, N > 1, and y ∈ <N with pdf as in

(1.19), find distinct xi ∈ <N for i ∈ {1, 2....n}, that do not lie on an N−1 dimensional

hyperplane, such that λmin(F ) is maximized subject to (2.4).

Problem 2: For a given integers n ≥ N + 1, N > 1, and y ∈ <N with pdf as in

(1.19), find distinct xi ∈ <N for i ∈ {1, 2....n}, that do not lie on an N−1 dimensional

hyperplane, such that det(F ) is maximized subject to (2.4).

Problem 3: For a given integers n ≥ N + 1, N > 1, and y ∈ <N with pdf as in
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(1.19), find distinct xi ∈ <N for i ∈ {1, 2....n}, that do not lie on an N−1 dimensional

hyperplane, such that trace (F−1) is minimized subject to (2.4).

Chapter 2 holds a canonical result for these three problems.

1.3.2 A Distributed Control Law for Optimum Sensor Placement for Source

Localization

In the wake of a growing need for autonomous sensor networks in search,

localization and rescue operations, the concept of Self Organizing Networks (SON) has

emerged as an energy efficient solution. The goal of this work is to develop a nonlinear

distributed control law with the least communication overhead that guides the sensors

to organize themselves to form the optimum sensor placement pattern required for

minimum mean square error in localizing a source. The proposed nonlinear control law

assumes that each sensor resides and moves on the prescribed circle, by accessing only

the states of its two immediate clockwise and counterclockwise neighbors. Chapter

3 presents the theoretical proofs that guarantee convergence of the algorithm to the

equispaced sensor placement scheme.

1.3.3 Optimum Sensor Placement for Energy Efficient Source Monitoring

In applications that require dense sensor deployment, the limited battery life

of the sensors is a concern since replacing the battery on each sensor is an impractical

and inefficient strategy in dense networks. Moreover, as discussed earlier, the geom-

etry/topology of the sensor network heavily influences the accuracy with which the

sensor network estimates the source location. Thus in applications that perform wire-
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sensors need to be placed 
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Figure 1.1: Top : Illustration of the problem Setup for the 3-D source localization.
Bottom: Illustration of the problem setup for energy efficient sensor placement for
source monitoring
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less source localization using sensor networks, the objective of the sensor placement

strategy is two fold.

• Improve the lifetime of the sensor network i.e improving the energy efficiency of

the sensor network to avoid too frequent post deployment battery replacements.

• Optimize the FIM associated with the source location estimate.

Chapter 4 deals with the sensor placement for source localization in this context.

All the above aims relate to the design of an equal norm column matrix.

1.3.4 Coprime Conditions for Fourier Analysis for Sparse Recovery

The design of equal norm column sensing matrices has a variety of other ap-

plications apart from the optimum sensor placement for N-dimensional source lo-

calization. One such application is fourier analysis in Magnetic Resonance Imaging

(MRI). Depending on the method used to acquire the MR image, one can choose

an appropriate transform domain that transforms the MR image into a sparse im-

age that is compressible. Some such transform domains include Wavelet Transform

and Fourier Transform. The inherent sparsity of the MR images in an appropri-

ately chosen transform domain, motivates one of the objectives of this thesis which

is to provide a method for designing a compressive sensing measurement matrix by

choosing a subset of rows from the Discrete Fourier Transform (DFT) matrix.

Chapter 5 considers the spark of L × N (L < N) submatrices of the N × N

Discrete Fourier Transform (DFT) matrix. The il − th element of the DFT matrix

is given by e
2πil
N . A matrix has spark m if every collection of its m − 1 columns are
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linearly independent. The motivation comes from applications of compressed sensing

as MRI and synthetic aperture radar, where device physics dictates the measurements

to be Fourier samples of the signal. Consequently the observation matrix comprises

certain rows of the DFT matrix. To recover an arbitrary k-sparse signal, the spark

of the observation matrix must exceed 2k + 1. The technical question addressed in

this work is how to choose the rows of the DFT matrix so that its spark equals the

maximum possible value L + 1. This exposes certain coprimeness conditions that

guarantee such a property. Specifically we propose methods to choose rows when the

size of the matrix is a product of two primes.

1.4 Outline of the thesis

Chapter 2 holds the analysis and results for the optimum sensor placement

problem for Source Localization in N ≥ 2 dimensions. The distributed control law

that guides the motion of sensors using only the relative position information of the

nearest clockwise and counter clockwise neighbors is discussed in Chapter 2. The op-

timum sensor placement scheme for source monitoring in two dimensions when only a

subset of 3 sensors are active in the sensor network is presented in Chapter 4. Chap-

ter 5 presents the design of a measurement matrix as a submatrix of DFT (Discrete

Fourier Transform) matrix for compressive sensing for MRI (Magnetic Resonance

Imaging).

The work presented in Chapters 2-5 appear in the following papers [36], [37], [38],

[39].
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CHAPTER 2
OPTIMUM SENSOR PLACEMENT FOR SOURCE LOCALIZATION

The aim of this work is to find an optimal placement for the sensor nodes on

or outside the surface of a N ≥ 2 dimensional sphere in a non-coplanar (non-collinear

in the case when N = 2) fashion in order to best localize a hazardous source whose

location has a radially symmetric probability density function. The radius of the N

dimensional sphere on or outside which the sensors are to be placed is chosen such

that the sensors are at a safe distance from the hazards that the source may present.

We consider localization of the source using the Received Signal Strength

(RSS) measurements under log-normal shadowing at various sensor nodes. The opti-

mal placement of the sensor nodes is achieved through maximization of the smallest

eigenvalue or the determinant of the expectation of the corresponding Fisher Infor-

mation Matrix (FIM) or by minimizing the trace of the inverse of FIM. We show in

Section 2.4 that the optimal solution is achieved if and only if the expectation of the

FIM is a scaled identity.

We propose a canonical optimum sensor placement whose FIM produces a

scaled identity. We define the Geometric Dilution of Precision for the sensor network

in terms of the FIM and plot it with respect to the number of sensors in the network.

We present simulations that confirm the superior performance of the proposed opti-

mum sensor placement in terms of the least mean square error in comparison with

instances of non-coplanar random sensor placement.
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2.1 Problem formulation

As described in Chapter 1, we use the received signal strength (RSS) model to

represent the method in which the sensors acquire the relative position information

of the source and formalize the optimum sensor placement problem.

Throughout this chapter, the sensors xi ∈ RN , i ∈ {1, · · · , n}measure the RSS

si emanated by a source located at y ∈ RN . Though the ambient space dimensions of

interest are N = 2 or N = 3, for the sake of completeness the results will be derived

for arbitrary N > 1.

The RSS is assumed to suffer from log-normal shadowing, [18]. In particular,

with mutually uncorrelated wi ∼ N(0, σ2), β a path loss parameter and A the RSS

at a unit distance, there holds:

ln si = lnA− β ln ||xi − y||+ wi. (2.1)

Throughout this work all norms refer to the 2-norm.

The source location itself is distributed in the ball of radius r1, centered at the

origin,

B(r1) = {a ∈ RN |||a||2 ≤ r1}, (2.2)

and that the distribution is radially symmetric. Thus the probability density function

(pdf) of y is given by, [35],

fY (y) =

{
g(||y||) for y ∈ B(r1)
0 else

. (2.3)
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As the source is hazardous, sensors cannot be too close to it. Specifically they

must obey

||xi||2 ≥ r2 > r1. (2.4)

Our goal is to select xi so that the si in (2.1), provide an optimum estimate

of y, subject to (2.2)-(2.4). As the source location is random, a common optimality

criterion is maximization, in an appropriate sense of the Expectation of the Fisher

Information Matrix (FIM). As shown in [25], for random parameter estimation, the

inverse of the expectation of the FIM provides the Cramer-Rao Lower Bound (CRLB)

matrix. Additionally, to assure unique localization, we also demand that the xi not

lie on an N − 1 dimensional hyperplane. For example, collinear sensor for N = 2,

and coplanar sensors for N = 3, can only localize to within a flip ambiguity. This

requirement also requires that n > N .

As shown in Chapter 1, for a nonrandom y the FIM for this problem is given

to within a scaling factor, by

n∑
i=1

(xi − y)(xi − y)T

||xi − y||42
(2.5)

Consequently, we must “maximize”

F = Ey

[ n∑
i=1

(xi − y)(xi − y)T

||xi − y||4

]
. (2.6)

What exactly does the maximization of F mean? Three standard criteria are
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what we call E, D and T optimality. These respectively, refer to the maximization

of the minimum eigenvalue of F , i.e. λmin(F ), the maximization of det(F ) or the

minimization of trace(F−1). The last in particular, is the equivalent to minimizing

the total mean square localization error, [25]. One of the facts demonstrated in this

chapter is that the solutions to all three problems are identical.

Formally, the objective of this work is to solve the following three problems:

Problem 1: For a given integers n ≥ N + 1, N > 1, and y ∈ <N with pdf

as in (2.3), find distinct xi ∈ <N for i ∈ {1, 2....n}, that do not lie on an N − 1

dimensional hyperplane, such that λmin(F ) is maximized subject to (2.4).

Problem 2: For a given integers n ≥ N + 1, N > 1, and y ∈ <N with pdf

as in (2.3), find distinct xi ∈ <N for i ∈ {1, 2....n}, that do not lie on an N − 1

dimensional hyperplane, such that det(F ) is maximized subject to (2.4).

Problem 3: For a given integers n ≥ N + 1, N > 1, and y ∈ <N with pdf

as in (2.3), find distinct xi ∈ <N for i ∈ {1, 2....n}, that do not lie on an N − 1

dimensional hyperplane, such that trace (F−1) is minimized subject to (2.4).

2.2 Properties of F

In this section, we examine some properties of (2.6). We first define a single

summand in (2.6), namely,

H(x) = E

[
(x− y)(x− y)T

||x− y||4

]
. (2.7)
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With this F in (4.2) becomes:

F =
n∑
i=1

H(xi). (2.8)

The first Lemma discusses how H(x) changes under an orthogonal transfor-

mation. Its importance comes from the fact that two xi that have the same norm,

are related through an orthogonal transformation.

Lemma 2.2.1 Consider H(x) as in (2.7), y distributed with pdf as in (2.3). Then

with P ∈ RN×N an orthogonal matrix, there holds

H(Px) = PH(x)P T (2.9)

Proof: Consider z = P Ty. As det(P ) = ±1, and ‖z‖ = ‖y‖, because of (2.3), there

holds,

fZ(z) = fY (z) (2.10)

= fy(y). (2.11)

H(Px) = E

[
(Px−y)(Px−y)T

||x−y||4

]
= E

[
P (x−PT y)(x−PT y)TPT

||P (x−PT y)||4

]
= E

[
P (x−z)(x−z)TPT
||(x−z)||4

]
= PE

[
(x−z)(x−z)T
||(x−z)||4

]
P T

= PH(x)P T .
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The following lemma characterizes the eigenvalues of H(x). To this end we

present the following lemma that denotes ei ∈ RN to be the vector whose i-th element

is one and the rest zero.

Lemma 2.2.2 Consider y ∈ RN with pdf (2.3) and R > r1. Then for every k ∈

{1, · · · , N}, H(Rek) is a positive semidefinite diagonal matrix all but whose i-th di-

agonal elements equal each other, while the i-th diagonal element is distinct from the

rest and positive. Further H(Rek) is positive definite unless

Prob(‖y‖ 6= 0) = 0. (2.12)

Proof: Because of the radial symmetry of (2.3) it suffices to prove the result for

k = 1. Denote yi to be the i-th element of y. Then for i ∈ {2, · · · , n}

E

[
yi

‖y −Re1‖4

]
= E

[
yi

((y1 −R)2 +
∑n

l=2 y
2
l )

2

]
. (2.13)

Fixing all elements of y except yi, gives us

yi

((y1 −R)2 +
∑n

l=2 y
2
l )

2 (2.14)

which is an odd function of yi, while g(‖y‖) is an even function. Thus,

E

[
yi

‖y −Re1‖4

]
= 0. (2.15)
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Similarly, for the same i and any l 6= i,

E

[
yiyl

‖y −Re1‖4

]
= 0. (2.16)

Now for any i 6= 1, the (1, i)-th element of H(Re1) is given by:

[H(Re1)]i1 = E

[
yi(y1 −R)

‖y −Re1‖4

]
(2.17)

= E

[
yiy1

‖y −Re1‖4

]
−RE

[
yi

‖y −Re1‖4

]
= 0. (2.18)

Similarly, for i ∈ {2, · · · , n} and m ∈ {2, · · · , n} \ {i},

[H(Re1)]im = E

[
yiym

‖y −Re1‖4

]
(2.19)

= 0. (2.20)

Thus H(Re1) is diagonal. The rest of the theorem follows from the fact for all
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i ∈ {2, · · · , n}:

0 ≤ E

[
y2i

((y1 −R)2 +
∑n

l=2 y
2
l )

2

]
(2.21)

= [H(Re1)]ii

6= E

[
(y1 −R)2

((y1 −R)2 +
∑n

l=2 y
2
l )

2

]
= [H(Re1)]11

> 0 ,

that

E

[
y2i

((y1 −R)2 +
∑n

l=2 y
2
l )

2

]
= E

[
y2m

((y1 −R)2 +
∑n

l=2 y
2
l )

2

]
(2.22)

for all i,m ∈ {2, · · · , n} and that equality in (2.21) holds iff (2.12) holds.

As fY (y) is radially symmetric, (2.12) implies that the source is almost surely

at the origin. Thus unless there is no uncertainty in the location of the source H(x)

is positive definite. This is essentially the setting considered in [28]. As all vectors

of the same norm are related by orthogonal transformation, Lemmas 2.2.1 and 2.2.2

lead to the following Theorem.

Theorem 2.2.1 Consider y ∈ RN distributed as in (2.3). Then for all ‖x‖ > r1,

H(x) in (2.7) is positive semidefinite, with N − 1 eigenvalues that are equal to each

other and another that is distinct from them and is positive. Further, H(x) is positive

definite unless (2.12) holds.

In the sequel trace(H(x)) will play a crtical role. Evidently, because of Lemma
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2.2.1 it depends only on ‖x‖. Consider the following notation:

T (R) = trace(H(x)); ∀‖x‖ = R. (2.23)

This brings us to a key difference between the development here and that in [29]-[36].

The development in that work relied on the fact that in those settings

H(R1ei) > H(R2ei) (2.24)

for all r1 < R1 < R2. For general radially symmetric distributions this is in

general false. Suppose in particular N = 3, and y is uniformly distributed on the

surface of the sphere of radius r1, i.e. in (2.3),

g(‖y‖) =
δ(‖y‖ − r1)

4πr21
. (2.25)

Then it is shown in Appendix A that

d [H(Re3)]33
dR

(2.26)

is in fact positive when R > r1 is sufficiently close to r1. As [H(Re3)]33 is an eigenvalue

of H(Re3), this means that (2.24) will not hold. This counterintuitive result is in part

a consequence of the fact that under (3.39), H(Re3) is finite.

In a significant technical departure from [29]-[36] this work will show that what
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is instead sufficient for the development here is that for all R > r1, T (R) in (2.23) be

a decreasing function of R. This is proved below.

Theorem 2.2.2 Consider (2.3) and (2.7). For R > r1, T (R) in (2.23) is a decreas-

ing function of R.

Proof: As all vectors of the same norm are related by orthogonal transformations,

for all R > r1

trace(R) = trace

(
E

[
(Re1 − y)((Re1 − y)T

‖Re1 − y‖4

])
(2.27)

= E

[
‖Re1 − y‖2

‖Re1 − y‖4

]
(2.28)

= E

[
1

‖Re1 − y‖2

]
(2.29)

= E

[
1

((y1 −R)2 +
∑n

l=2 y
2
l )

2

]
. (2.30)

The result follows from the fact that whenever ‖y‖ ≤ r1 < R1 < R2

(y1 −R1)
2 +

n∑
l=2

y2l < (y1 −R2)
2 +

n∑
l=2

y2l . (2.31)

2.3 Characterizing Optimality

In this section we characterize xi that achieve optimaility for all three of the

Problems 1 to 3. This requires the following Lemma.
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Lemma 2.3.1 Consider a positive definite A = AT ∈ RN×N . Then

λmin(A) ≤ trace(A)

N
, (2.32)

det(A) ≤
(
trace(A)

N

)N
(2.33)

trace
(
A−1

)
≥ N2

trace(A)
. (2.34)

Further, the equality holds in each of (2.32-2.34) iff

A =
trace(A)

N
I (2.35)

Proof: Observe that for all i ∈ {1, · · · , N}, every eigenvalue λi(A) is positive. Then

(2.32) follows from the fact that the trace is the sum of the eigenvalues. Further the

equality requires that for all i ∈ {1, · · · , N}

λi(A) =
trace(A)

N
. (2.36)

As A is symmetric this can happen iff (2.35) holds.

The AM-GM ineqaulity states that the arithmetic mean of N numbers is

greater than or equal to its geometric mean, with equality iff all the N numbers are

equal.
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Finally, also from the AM-GM inequality

trace
(
A−1

)
= N

N∑
i=1

1

Nλi(A)

≥ N

(
N∏
i=1

1

λi(A)

) 1
N

. (2.37)

The result follows from the fact that equality in (2.37) holds iff (2.36) holds and that

under it

N

(
N∏
i=1

1

λi(A)

) 1
N

= N

(
N

trace(A)

)
(2.38)

Theorem 2.3.1 The xi ∈ RN , do not lie on an N − 1 dimensional hyperplane, solve

all three of Problems 1-3, iff (a) for all i ∈ {1, · · · , n}, ‖xi‖ = r2 and lead to

F =
nT (r2)

N
I. (2.39)

Proof: The fact that such xi exist is proved in Section 2.4. The fact they optimize

follows from Lemma 2.3.1, which requires that the trace of F be as large as possible,

and the fact that because of Theorem 2.2.2 and (2.4)

trace(F ) ≤
n∑

1=1

trace(H(xi)) (2.40)

≤ nT (r2), (2.41)

with equality iff each xi has norm r2.
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Thus the optimum occurs when each sensor resides on a ball of radius r2.

Observe, that the optimizing solution cannot be unique. To see this, observe because

of Lemma 2.2.1, H(−xi) = H(xi). Thus flipping the sign of any sensor location does

not alter F . Similarly, suppose a set of xi optimize. Then replacing each by Pxi, will

also result in an F that equals (2.39). Further suppose, n = N + 1 sensors achieve

optimality. Then optimality with 2N + 2 sensors can be achieved with an infinite

number of combinations. For example, one can choose the first N + 1 to lie at xi and

for arbitrary orthogonal P , the remaining at Pxi.

Because of this, rather than proposing an exhaustive list of optimal configu-

rations, in Section 2.4 we propose a set of canonical solutions.

2.4 Canonical Solutions

Section 2.3 had proofs that the solution to all three problems involves ‖xi‖ =

r2, and the satisfaction of (2.39). Also the solutions are nonunique in potentially

nontrivial ways. This section provides a class of canonical solutions, and in the

process proves the existence of xi that do not lie on an N −1 dimensional hyperplane

and satisfy (2.39). Though the interest is for N = 2 or N = 3, for the sake of

completeness this section provides these solutions for all N > 1. This section also

exposes certain salient differences between the N = 2 and N = 3 cases.

Since a necessary condition for optimality is that all xi have norm r2, and

all such vectors are mutually related by orthogonal transformations, the canonical

solutions we propose take the following form: For an orthogonal matrix Q ∈ RN×N ,
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the xi ∈ RN obey:

xi+1 = Qxi, ‖x1‖ = r2, ∀ i ∈ {1, · · · , n}. (2.42)

In view of Theorem 2.3.1, the goal is to characterize all orthogonal Q and x1 pairs

such that under (2.42), the xi do not lie on an N − 1 dimensional hyperplane and

result in (2.39). The first requirement necessitates that n > N .

Suppose under (2.42), (2.39) holds i.e.:

n∑
i=1

H(xi) =
n−1∑
i=0

H(Qix1)

=
n−1∑
i=0

QiH(x1)Q
′i

=
nT (r2)

N
I. (2.43)

Definition 2.4.1 The orthogonal matrix Q ∈ RN×N and the vector x1 ∈ RN , ‖x1‖ =

r2 form an admissible pair if the xi in (2.42) do not span an N − 1 dimensional

hyperplane and obey (2.43).

The rest of this section explores how Q changes with x1. Consider a z1 ∈ RN ,

with ‖z1‖ = r2. Then there exists an orthogonal matrix P such that

z1 = Px1. (2.44)
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Then because of Lemma 2.2.1

nT (r2)

N
I =

nT (r2)

N
PP T (2.45)

= P

(
n−1∑
i=0

QiP TPH(x1)P
TPQ′i

)
P T (2.46)

=
n−1∑
i=0

(
PQiP T

)
H(Px1)

(
PQ′iP T

)
(2.47)

=
n−1∑
i=0

(
PQP T

)i
H(z1)

(
PQP T

)′i
(2.48)

Thus under (2.44) the optimizing Q must be transformed to PQP T . This

brings us to a distinction between N = 2 and N = 3 or for that matter any N > 2.

For N = 2 all orthogonal matrices belong to one of two categories. The first known

as Givens Rotations have the form for some θ ∈ <

Q1(θ) =

[
cos θ sin θ
− sin θ cos θ

]
(2.49)

and

Q2(θ) =

[
cos θ sin θ
sin θ − cos θ

]
(2.50)

Among these (2.49) is a rotation matrix in that its determinant is one. In fact

it rotates every vector counterclockwise by the angle θ. On the other hand, (2.50),

having a determinant −1, is not a rotation matrix. More compellingly Q2
2(θ) = I.

Thus with Q = Q2(θ) the set in (2.42) comprises precisely two elements, rendering

the xi collinear. Thus henceforth for N = 2 only Givens Rotations will be considered.
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Observe:

Q1(θ1)Q1(θ2) = Q1(θ1 + θ2) = Q1(θ2)Q1(θ1), (2.51)

i.e. Givens Rotations commute.

Further, given any pair z1, x1 of the same norm, there exist θi ∈ < such that

z1 = Qi(θi)x1. (2.52)

Should Q be a Givens Rotation then select P = Q1(θ1) in (2.44); and observe

that:

PQP T = QPP T (2.53)

= Q. (2.54)

In other words, for N = 2, if a Givens Rotation Q leads to (2.43) with a particular

x1, then the same Q also works with arbitrary z1 of the same norm as x1. The

commutatitivity in (2.51) does not extend to N > 2. Thus at least for N > 2

changing x1 will cause Q to change.

2.4.1 Avoiding Coplanarity

A second point of departure between N = 2 and N > 2 comes from the

fact that any three distinct points on a circle centered at the origin are necessarily
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noncollinear. For N > 2, N + 1 distinct points on a hypersphere centered at the

origin, can lie on an N − 1 dimensional hyperplane. The requirement of avoiding

an N − 1 dimensional hyperplane imposes certain conditions on Q, which we now

characterize in the theorem below. As background to this theorem we observe that

a real orthogonal matrix Q is normal as QTQ = QQT = I, [40]. Thus it is unitarily

diagonalizable, i.e for some unitary U ∈ CN×N , with UHU = I, and Ω ∈ CN×N a

diagonal matrix comprising the eigenvalues of Q.

Q = UΩUH . (2.55)

Theorem 2.4.1 Consider an orthogonal Q ∈ RN×N obeying (2.55), with diagonal

Ω ∈ CN×N and unitary U ∈ CN×N , and xi as in (2.42). Then with integer n > N ,

the set {xi}ni=1 does not lie on an N−1 dimensional hyperplane iff all of the following

hold.

(i) The eigenvalues of Q are distinct.

(ii) One is not an eigenvalue of Q.

(iii) All elements of UHx1 are nonzero.

Proof: Observe that {xi}ni=1 lie on an N − 1 dimensional hyperplane iff there is a

nonzero a ∈ RN and b ∈ R such that

aTxi = b ∀ i ∈ {1, · · · , n} (2.56)
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Define

ρ = UHx1, (2.57)

and

η = UHa. (2.58)

Then (2.56) is equivalent to the existence of a nonzero η ∈ CN such that

ηHΩiρ = b ∀ i ∈ {0, · · · , n− 1} (2.59)

Denote Ω = diag{ω1, · · · , ωN}. Suppose ρl, the l-th element of ρ is zero. Choose

η = ηlel, for nonzero ηl ∈ C. Then

ηHΩiρ = ηlω
i
lρl = 0 ∀ i ∈ {0, · · · , n− 1} (2.60)

i.e. {xi}ni=1 lie on an N − 1 dimensional hyperplane. Similarly suppose an

eigenvalue of Q, i.e. a diagonal element of Ω is one. In particular suppose ωl = 1.

Again choose η = ηlel, for nonzero ηl ∈ C Then:

ηHΩiρ = ηlω
i
lρl = ηlρl ∀ i ∈ {0, · · · , n− 1} (2.61)
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and again {xi}ni=1 lie on an N−1 dimensional hyperplane. Suppose next (i) is violated.

Without loss of generality suppose ω1 = ω2. Choose η1 and η2 so that

[η∗1, η
∗
2]

[
ρ1
ρ2

]
= 0 (2.62)

and η = [η∗1, η
∗
2, 0]T .

Then:

ηHΩiρ = ωi1[η
∗
1, η
∗
2]

[
ρ1
ρ2

]
= 0 ∀ i ∈ {0, · · · , n− 1} (2.63)

i.e. {xi}ni=1 lie on an N − 1 dimensional hyperplane. Thus (i-iii) are indeed

necessary for {xi}ni=1 to avoid an N − 1 dimensional hyperplane.

Henceforth assume that (i-iii) hold. To establish a contradiction suppose

{xi}ni=1 lie on an N − 1 dimensional hyperplane. Then (2.59) holds. Taking dif-

ferences on both sides of (2.59) for successive value of i, as Ω is diagonal there holds

for all i ∈ {0, · · · , n− 2} and η 6= 0,

0 = ηHΩi+1ρ− ηHΩiρ (2.64)

= ηHdiag{ω1 − 1, · · · , ωN − 1}Ωiρ. (2.65)
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0 = ηHΩi+1ρ− ηHΩiρ (2.66)

= ηHdiag{ω1 − 1, · · · , ωN − 1}Ωiρ. (2.67)

As under (ii) all ωl 6= 1, η̃ = diag {ω1 − 1, · · · , ωN − 1}Hη 6= 0. Thus as n > N , for

all i ∈ {0, · · · , N − 1} and η̃ 6= 0,

η̃HΩiρ = 0. (2.68)

Thus, [41], [Ω, ρ] is not a completely controllable pair. As Ω is a diagonal

matrix with distinct diagonal elements, at least one element of ρ must be zero, [41].

This contradicts (iii) proving the result.

Since the eigenvalues of Q are on the unit circle, and complex eigenvalues

appear in conjugate pairs, for even N this means that the eigenvalues of Q must be

distinct, complex and of the form e±jθi . For N = 2 this necessitates the use of Given

Rotations as the eigenvalues of (2.50) are ±1 regardless of θ. On the other hand for

odd N ,
⌊
N
2

⌋
eigenvalues are complex and of the form e±jθi . The remaining eigenvalue

must be at −1. Thus for odd N , det(Q) = −1, preventing Q from being a rotation

matrix. This also brings into sharp relief a contrast between N = 2 and N = 3.

While for the former admissible Q matrices are rotation matrices, for N = 3 they

cannot be.
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Only the necessity of (i) and (ii) was noted in [36], making the argument there

incomplete. The role of (iii) is quite crucial. Thus, while

Q =

( cos θ sin θ 0
− sin θ cos θ 0

0 0 −1

)
(2.69)

satisfies (i) and (ii), and can be paired with x1 = [1, 1, 1]T , it cannot be paired with

e3 or [1, 1, 0]T . This further underscores the quirks induced by the noncommutativity

of orthogonal matrices for N > 2.

2.4.2 Achieving the Optimum FIM

This subsection presents work on designing Q, x1 pairs that ensure (2.43).

Suppose W ∈ <N×N is an orthogonal matrix for which

x1 = r2We1. (2.70)

Then because of lemmas 2.2.1 and 2.2.2 one obtains

H(x1) = WΛW T (2.71)

where for λ1 > 0, λ2 ≥ 0 and λ1 6= λ2,

Λ = diag {λ1, λ2IN−1}. (2.72)
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Define

T = UHW (2.73)

with U defined in (2.55). Then (2.43) is equivalent to:

nT (r2)

N
I =

nT (r2)

N
UHU

= UH

(
n−1∑
i=0

QiH(x1)Q
′i

)
U

= UH

(
n−1∑
i=0

(
UΩUH

)i
WΛW T

(
UΩ∗UH

)i)
U

= UH

(
n−1∑
i=0

UΩiUHWΛW TUΩ∗iUH

)
U

=
n−1∑
i=0

ΩiTΛTHΩ∗i (2.74)

Observe (iii) of Theorem 2.4.1 is equivalent to the requirement that all elements

of

UHx1 = UHWe1 (2.75)

be nonzero. In other words the first column of T is nonzero. It will be evident in

the sequel that to satisfy (2.43) it is necessary for all diagonal elements of TΛTH to

be the same. The work that follows shows that this requirement is equivalent to the

requirement that all elements in the first column of T are equal. As T is unitary this

automatically means that all elements in its first column are nonzero.

Lemma 2.4.1 Suppose T ∈ CN×N is unitary. With Λ as in (2.72) and λ1 6= λ2,

all diagonal elements of TΛTH are equal iff all elements in the first column of T are
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equal and nonzero. Further, all elements of TΛTH are nonzero.

Proof: Observe that for some α 6= 0

Λ = λ2I + αe1e
T
1 . (2.76)

Thus:

TΛTH = T (λ2I + αe1e
T
1 )TH

= λ2I + αTe1e
T
1 T

H (2.77)

Thus the i-th diagonal element of TΛTH is λ2 +αµi where µi is the magnitude square

of the i-th element of Te1. Thus all elements of Te1 have the same magnitude. As T is

nonsingular no element of Te1 can be zero. Also from (2.77) the off-diagonal elements

of TΛTH are α times the product of the elments of Te1 and must be nonzero.

The following theorem characterizes Q, x1 pairs that are admissible when N

is even.

Theorem 2.4.2 Suppose for integer M ≥ 1, n > N = 2M . Consider orthogonal

Q ∈ RN×N obeying (2.55) with unitary U ∈ CN×N and diagonal Ω ∈ CN×N , and with

orthogonal W ∈ RN×N , 0 < λ1 6= λ2 ≥ 0, (2.70-2.73). Then the Q and x1, form an

admissible pair iff all of the following hold.

(a) All elements of Te1 have the same magnitude.

(b) There exist real θ1, · · · , θM , such that the diagonal elements of Ω are e±jθi and
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distinct.

(c) For all i ∈ {1, · · · ,M}, e±jθi 6= ±1.

(d) For all {i, l} ⊂ {1, · · · ,M}, including i = l, θi ± θl are integer multiples of

2π/n.

Proof:

Necessity:

The necessity of (b) and (c) follows from Theorem 2.4.1. Call vil the il-th

element of TΛTH . As the i-th diagonal of the summation in (2.74) is nvii, all diagonal

elements of TΛTH are equal. Then from Lemma 2.4.1, (a) must hold. Further also

from Lemma 2.4.1, every vil 6= 0.

The off-diagonal elements on the left hand side of (2.74) are two types. First

for suitable {k, l} ⊂ {1, · · · , N}, k 6= l, and {r, s} ⊂ {1, · · · ,M}, r 6= s,

vkl

n−1∑
i=0

e±ji(θr±θs) = vkl
1− e±jn(θr±θs)

1− e±j(θr±θs)
. (2.78)

Because of (b) and (c) the denominators are non-zero. Thus as (a) holds, for r 6= s,

n(θr ± θs) is a multiple of 2π, i.e. θr ± θs is a multiple of 2π/n.

The second type of off-diagonal elements on the left hand side of (2.74) are:

for suitable {k, l} ⊂ {1, · · · , N}, k 6= l, and r ∈ {1, · · · ,M},

vkl

n−1∑
i=0

e±2jiθr = vkl
1− e±j2nθr
1− e±2jθr

. (2.79)
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Because of (c) the denominators are again non-zero. Thus as (a) holds, 2nθr is a

multiple of 2π. Thus (d) is also necessary.

Sufficiency

To prove sufficiency we first note that as remarked before Lemma 2.4.1, (a-c)

together with Theorem 2.4.1 assure that the xi in (2.42) do not inhabit an N − 1

dimensonal hyperplane. That the off-diagonal elements of the summation in (2.74)

also zero follows by reversing the arguments proving the necessity of (d). That the

diagonal elements in the sum are equal follows from (a) and Lemma 2.4.1.

The foregoing represents a complete characterization of Q when N = 2M ,

and n > N . It is interesting that the noncollinearity requirement mandates the use

of Givens rotations for N = 2, in stark contrast to the N = 3 case where rotation

matrices preclude noncoplanarity.

The work that follows shows that for every M ≥ 1, a Q conforming to this

characterization can be found. Recall that for N = 2 if a Q, x1 with ||x1|| = r2 pair

is admissible, then so is Q, x for all x ∈ <2 with norm r2. Call u2 ∈ <2 the vector

of all ones. It is readily verified that H( 1√
2
r2u2) has equal diagonal elements. Thus,

with x1 = r2√
2
u2, from Lemma 2.4.1, with W as in (2.70) We1 has both elements of

equal magnitude. Consider U = Te below,

Te =
1√
2

[
1 1
j −j

]
. (2.80)

Then UHWe1 aslo has both elements of the same magnitude. Then the Q below
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satisfies all requirements of the Theorem 2.4.2 and forms an admissible pair with any

x ∈ <2 with magnitude r2.

Q = Udiag
{
ej

2π
n , e−j

2π
n

}
UH (2.81)

=
1

2

[
ej

2π
n e−j

2π
n

jej
2π
n −je−j 2πn

] [
1 −j
1 j

]
(2.82)

=

[
cos 2π

n
sin 2π

n

− sin 2π
n

cos 2π
n

]
(2.83)

This is thus the Givens rotation by 2π/n. Thus n-sensors are distributed equispaced

on the circle centered at orgin with radius r2. These are optimum spherical codes in

<2 in that these are collection of n-points on a circle such that the minimum distance

between them is the maximum possible.

As replacing any xi by −xi does not impair optimality, sensors equispaced on

a semicircle are also optimum. On the other hand:

Q = Udiag
{
ej

2π
n
+π, e−j

2π
n
+π
}
UH (2.84)

=

[
cos 2π

n
sin 2π

n

sin 2π
n
− cos 2π

n

]
(2.85)

also meets the requirement of Theorem 2.4.2 and constitutes a matrix of the form in

(2.50).

Then for M > 1, the N ×N matrix

T = diag {Te, Te, · · · , Te} (2.86)
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obeys (a) if x1 = [1, · · · , 1]T/
√
N .

Indeed in this case with:

Qi =

[
cos(θi) sin(θi)
− sin(θi) cos(θi)

]
(2.87)

one obtains:

Q = diag{Q1, Q2, · · · , QM}. (2.88)

The θi chosen to be odd multiples of π/n will satisfy (d). For example one

could choose for k ∈ {1, · · · ,M}

θk =
(2k − 1)π

n
. (2.89)

Given that there are M of these with n > 2M , one has for all k ∈ {1, · · · ,M} that

0 < θk ≤
(2M − 1)π

n
< π, (2.90)

i.e. these satisfy (b-c) as well.

The folowing theorem characterizes the design of Q x1 pair for odd values of

N > 1.

Theorem 2.4.3 Suppose for integer M ≥ 1, n > N = 2M + 1. Consider orthogonal

Q ∈ Rn×n obeying (2.55) with unitary U ∈ Cn×n and diagonal Ω ∈ Cn×n, and with

orthogonal W ∈ Rn×n, 0 < λ1 6= λ2 ≥ 0, (2.70-2.73). Then Q and x1 form an
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admissible pair iff all of the following hold.

(a) All elements of Te1 have the same magnitude.

(b) There exist real θ1, · · · , θM , such that 2M of the 2M + 1 diagonal elements of

Ω are e±jθi, are distinct and appear in conjugate pairs. The remaining diagonal

element of Ω is -1.

(c) For all i ∈ {1, · · · ,M}, e±jθi 6= ±1.

(d) For all {i, l} ⊂ {1, · · · ,M}, including i = l, θi ± θl are integer multiples of

2π/n.

(e) For all i ∈ {1, · · · ,M}, (±θi − π) are integer multiples of 2π/n.

Proof:

Necessity:

The necessity of (a-c) follows as in the proof of Theorem 2.4.2. The off diagonal

elements on the left hand side of (2.74) are now of three types. First for suitable

{k, l} ⊂ {1, · · · , N}, k 6= l, and {r, s} ⊂ {1, · · · ,M}, r 6= s, obey (2.78). The second

for suitable suitable {k, l} ⊂ {1, · · · , N}, k 6= l, and r ∈ {1, · · · ,M}, obey (2.79).

Thus as in the proof of Theorem 2.4.2 (2.74) implies (d).

The third type of off diagonal element is for suitable suitable {k, l} ⊂ {1, · · · , N},

k 6= l, and r ∈ {1, · · · ,M}, obey:

vkl

n−1∑
i=0

eji(±θr−π) = vkl
1− ejn(±θr−π)

1− ej(±θr−π)
. (2.91)

Again because of (c) the denominator is non-zero, and thus for this element to be
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zero (e) must hold.

Sufficiency:

Proof of sufficiency follows as in the proof of Theorem 2.4.2.

The work that follows shows the design of a Q, x1 admissible pair for N = 3.

Suppose u3 ∈ <3is a vector with all ones. Consider x1 = 1√
3
r2u3. Then with W as in

(2.70), all elements of We1 have the same magnitude. Choose U = To where

To =

 1√
2

1√
2

0
j√
2

−j√
2

0

0 0 −1

 . (2.92)

Thus the vector UHWe1 has all elements of the same magnitude satisfying the

condition in Theorem 2.4.3. Thus Q below satisfies all the conditions in Theorem

2.4.3 and hence Q , x1 = 1√
3
r2u3 form an admissible pair.

Q = Udiag
{
ej

2π
n
+π, e−j

2π
n
+π,−1

}
UH (2.93)

=

[ − cos 2π
n
− sin 2π

n
0

sin 2π
n

− cos 2π
n

0
0 0 −1

]
(2.94)

Then for M > 1, the N ×N matrix

T = diag {Te, Te, · · · , Te,−1} (2.95)

obeys (a) if x1 = [1, · · · , 1]T/
√
N .
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In this case with:

Qi =

[
cos(θi) sin(θi)
− sin(θi) cos(θi)

]
(2.96)

one obtains:

Q = diag{Q1, Q2, · · · , QM ,−1}. (2.97)

The θi chosen to be odd multiples of π/n will satisfy (d). For example one

could choose for k ∈ {1, · · · ,M}

θk =
(2k − 1)π

n
. (2.98)

Given that there are M of these with n > 2M , one has for all k ∈ {1, · · · ,M} that

0 < θk ≤
(2M − 1)π

n
< π, (2.99)

i.e. these satisfy (b-c) as well.

2.4.3 Geometric Interpretation of the solution

The proposed canonical solution has the following attractive feature when

N = 3. All xi lie on the base of two inverted cones with axes parallel to the z-axis,

and vertices at the origin. All the points on the base of the first cone have a z-co-

ordinate that is the negative of those on the base of the second cone. The rims of the

bases lie on the sphere of radius r2. The xi’s alternate between the two bases. Each
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Figure 2.1: Illustration of proposed sensor placement for n = 4 and r2 = 2

xi is further rotated by an angle of 2π/n − φ parallel to the x − y plane, from the

previous xi as shown in Figure 2.1.

2.5 Simulation Results for the three dimensional case

We compare the performance of the proposed optimum solution with that of

the performance of a non-coplanar random sensor placement in the following simula-

tions.

1. Geometric Dilution of Precision of the network versus the number of nodes in

the network.
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2. det(FIM) versus the number of nodes in the network.

3. λmin(FIM) versus the number of nodes in the network.

4. Average mean square error in the source location estimate versus the standard

deviation of the gaussian term in the log-normal shadowing.

We perform all the simulations with the following simulation parameters.

1. The signal strength at unit distance from the source A = 1.

2. The path loss co-efficient β = 2.

3. Number of source locations selected from the uniform distribution=100.

4. Radius of the sphere in which the source locations were uniformly distributed

= 0.1.

5. Radius of the outer sphere on which the sensors were placed = 1.

6. The localization error for each of the 100 source locations is averaged over 10, 000

iterations.

For gaussian noise, the Geometric Dilution of Precision is related to the Cramer

Rao Lower Bound (CRLB) through the following relation (2.100) [42], [43], [44].

GDOP =

√
CRB

σ
. (2.100)

where CRB = trace(FIM−1) is the corresponding Cramer Rao bound obtained from

the Fisher Information Matrix (FIM) and σ is the standard deviation of the gaussian

term in the log-normal shadowing. Given that the distribution of the source location
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Figure 2.2: Plot of GDOP Versus Number of sensors in the network.

is known, we define the GDOP to be

GDOP =

√
(average(trace(FIM−1)))

σ
. (2.101)

Figure 2.2 compares the GDOP for the proposed optimum sensor placement with

that of the random placements in the case where the source location has a uniform

distribution within a sphere. Clearly, the proposed optimum sensor placement shows

better performance when compared to non-coplanar random sensor placement.
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Figure 2.3: Plot of determinant of FIM Versus Number of sensors in the network.

Figure. 2.3 shows that the det(FIM) is lower for the proposed optimum sensor

placement in contrast to the det(FIM) for random sensor placement.
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Figure 2.4: Plot of Minimum Eigenvalue of FIM Versus Number of sensors in the
network.

Figure. 2.4 shows that the λmin(FIM) is larger for the proposed optimum sensor

placement in contrast to the λmin(FIM) for random sensor placement.
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Figure 2.5: Plot of 10log(Average Normalized Mean square error in the source loca-
tion) Versus Signal to Noise Ratio (dB). Red dotted line represents the performance
of the random placement. Blue line represents the performance of the proposed op-
timum sensor placement

Figure. 2.5 compares the average mean square error performance of the opti-

mum sensor placement to the performance of the random placement. The variance

of the log-normal shadowing varies between 0.01 and 9 in steps of 2. We use the

improved Linear Least Squares Estimation method proposed in [45]. The simulations

were performed using MATLAB.

2.6 Conclusion

This chapter presented a class of optimum solutions to the sensor placement

problem to localize a hazardous source whose location has a radially symmetric dis-
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tribution in a N ≥ 2 dimensional sphere under the constraint that the sensors are at

a particular distance from the source. The optimality criterion was the maximization

of the smallest eigenvalue or the determinant of the underlying FIM or the mini-

mization of the trace of the inverse of the expectation of the FIM. Through rigorous

mathematical analysis we have shown that the optimality is achieved if and only if

the expectation of the corresponding FIM is a scaled identity. The simulation results

validate the theory developed.
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CHAPTER 3
A DISTRIBUTED CONTROL LAW FOR OPTIMUM SENSOR

PLACEMENT FOR SOURCE LOCALIZATION

The objective of this chapter is to design a nonlinear distributed control law

that guides the motion a group of sensors to achieve a configuration that permits

them to optimally localize a hazardous source they must keep a prescribed distance

from. Chapter 2 shows that such a configuration involves the sensors being placed

in an equispaced manner on a prescribed circle. The proposed nonlinear control law

assumes that each sensor resides and moves on the prescribed circle while avoiding

collisions, by accessing only the states of its two immediate clockwise and counter-

clockwise neighbors.

3.1 Introduction

In the wake of a growing need for autonomous sensor networks in search,

localization and rescue operations, the concept of Self Organizing Networks (SON)

has emerged as an energy efficient solution. The goal of this work is to develop a

nonlinear distributed control law with the least communication overhead that guides

the sensors to organize themselves to form the optimum sensor placement pattern

required for minimum mean square error in localizing a source.

Sensor networks must reorganize for various reasons including collecting multi-

ple measurements for a better perspective on the communication environment, track-

ing a mobile source, repairing the network with dead nodes or simply saving energy
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[46]- [51]. The interest here is to organize a group of sensors in a manner that permits

them to optimally localize a source.

The specific setting considered in this chapter assumes that the source being

localized is hazardous and the sensors must maintain a safe distance from the source.

The sensors can measure the signal strength from the source and use that to localize

the source that emits the signal. The signal strength itself experiences log normal

shadowing, [18]. Optimality involves the maximization of an underlying Fisher Infor-

mation Matrix. As explained in Section 3.2, earlier work in [28] and [29], under the

above assumptions on the source location, shows that optimal sensor configuration

involves sensors that lie in an equispaced manner on a specific circle.

The goal is thus to formulate a nonlinear distributed control law that permits

the sensors to achieve such a configuration with minimum communication overhead, in

the tradition of [52]-[55]. Specifically, we assume that the sensors lie on the prescribed

circle and can measure the location of their immediate clock and counterclockwise

neighbors. Using this information alone they achieve the desired configuration, while

avoiding collisions.

3.2 The Cost Function

Consider a source at y ∈ R2 at the origin or uniformly distributed in a disk

of radius r1, centered at the origin. A group of N sensors must collectively localize

the source using received signal strength (RSS). The i-th sensor located at xi ∈ R2

measures the RSS si that undergoes log-normal shadowing [18], i.e. for mutually
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Figure 3.1: The underlying communication graph

uncorrelated wi ∼ N(0, σ2), obeys

ln si = lnA+ β ln ‖xi − y‖+ wi, (3.1)

with known A and β. As the source is hazardous the sensors must be placed at a safe

distance. Specifically, they must obey:

‖xi‖ ≥ r (3.2)

where in the setting of Chapter 2, r > r1.

Based on the calculations presented in Chapter 1, the Fisher Information Ma-

trix (FIM) associated with the estimation of the nonrandom source location y is given
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by

F =
N∑
i=1

(xi − y)(xi − y)T

‖xi − y‖4
(3.3)

For random y as in [29], the corresponding matrix is E(F ), [25].

As is standard, one criterion for optimality is the optimization of the FIM or

E(F ) in a suitable sense. Chapter 2 shows that in both cases optimality is obtained

if the xi are equispaced on the circle of radius r centered at the origin.

Without loss of generality we assume that r = 1, and that all sensors reside

and move on the unit circle. Thus the location of the i-th sensor can be parameterized

as

xi =

[
cos θi
sin θi

]
. (3.4)

Call

θ = [θ1, · · · , θN ]>. (3.5)

By exchanging θi the sensors must achieve the following configuration: For

arbitray θ∗1 ∈ [0, 2π] there should hold

θi = θ∗i = θ∗1 +
2π(i− 1)

N
, i ∈ {1, · · · , N}. (3.6)

In the sequel, assume that

0 ≤ θ1(0) < θ2(0) < · · · < θN(0) < 2π. (3.7)
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For notational simplicity, assume also that

θ0 = θN and θN+1 = θ1. (3.8)

The optimum sensor placement for source localization is the same as the opti-

mum sensor placement for source monitoring. Thus the proposed algorithm uses the

minimum eigenvalue of the FIM in the source monitoring case for the design of the

appropriate cost function for the non-linear algorithm.

In the case of source monitoring, it is assumed that the source location has

already been estimated and that the sensors are continuously estimating the location

of the source from a safe distance. Since the location of the source is known, without

loss of generality, it can be assumed that the source is at the origin. Thus the FIM

is of the form

F =
N∑
i=1

xix
T
i (3.9)

To evaluate the minimum eigenvalue of F consider a unit norm vector of the

form η =
(

cosα sinα
)T
. The minimum eigenvalue of F is given by minimimizing

ηTFη over α. Consider

ηTFη =
K∑
j=1

ηTxix
T
i η. (3.10)
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Since ||η||2 = 1 we can choose η =

(
cosα sinα

)T
. Thus

ηTxix
T
i η =

[
cosα sinα

][
cos2 θi cos θi sin θi

cos θi sin θi sin2 θi

][
cosα
sinα

]
= (cos(α) cos(θi) + sin(α) sin(θi))

2

= cos2(α− θi)

After simplification, (3.10) becomes

ηTFη =
N∑
j=1

cos2(α− θij) =
N

2
+

1

2

N∑
j=1

cos(2(α− θi)). (3.11)

Define

J(α) =
N

2
+

1

2

N∑
j=1

cos(2(α− θi)). (3.12)

Then the minimum or maximum eigenvalue of F is achieved when

J ′(α) = −2
N∑
j=1

sin(2(α− θi)) = 0. (3.13)

We also have

J ′′(α) = −4
N∑
j=1

cos(2(α− θi)) ≥ 0 (3.14)

at the minimum eigenvalue and the inequality is reversed at the maximum eigenvalue.

From (3.13),
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sin(2α)
N∑
i=1

cos(2θi) = cos(2α)
N∑
i=1

sin(2θi) (3.15)

The minimizing α is given by

tan(2α) =

∑N
i=1 sin(2θi)∑N
i=1 cos(2θi)

(3.16)

Thus when (
∑K

j=1 sin(2θij))
2 + (

∑K
j=1 cos(2θij))

2 6= 0, from (3.13), the minimizing α

satisfies

cos(2α) =

∑N
j=1 cos(2θi)√

(
∑K

j=1 sin(2θi))2 + (
∑N

j=1 cos(2θi))2
(3.17)

and

sin(2α) =

∑N
j=1 sin(2θi)√

(
∑N

j=1 sin(2θi))2 + (
∑N

j=1 cos(2θi))2
. (3.18)

From expansion of (3.12), we get

J(α) =
N

2
+

1

2

N∑
j=1

cos(2α) cos(2θi) +
1

2

N∑
j=1

sin(2α) sin(2θi). (3.19)

Substituting the minimizing α in (3.19) we have

Jmin =
N

2
+

1

2

∑N
j=1

∑N
i=1(cos(2θi) cos(2θj) + sin(2θi) sin(2θj))√

(
∑N

i=1 sin(2(θi))2 + (
∑N

i=1 cos(2θj))2
.

Define

D2 =

( N∑
I=1

sin 2θi

)2

+

( N∑
I=1

cos 2θi

)2

. (3.20)
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Then

D2 =
N∑
i=1

(
sin2 2θi + cos2 2θi

)

+
N∑
i=1

N∑
j=1,j 6=i

cos 2θi cos 2θi +
N∑
i=1

N∑
j=1,j 6=i

sin 2θi sin 2θj

= N + 2
N∑
i=1

N∑
j=i+1

cos 2(θi − θj)

Similarly, we define

N =
N∑
i=1

N∑
j=1

cos(2θi) cos(2θj) +
N∑
i=1

N∑
j=1

sin(2θi) sin(2θj). (3.21)

It can be expanded as

N =
N∑
i=1

(sin2 2θi + cos2 2θi) +
N∑
i=1

N∑
j=1,j 6=i

cos 2θi cos 2θj

+
N∑
i=1

N∑
j=1,j 6=i

sin 2θi sin 2θj

= N + 2
N∑
i=1

N∑
j=i+1

cos 2(θi − θj)

From (3.14), we know that N < 0. Thus Jmin can be expressed as

Jmin =
N

2
− 1

2

|N |
D
. (3.22)
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i.e.

J(αmin) =
N

2
− 1

2

√√√√N

2
+

N∑
i=1

K∑
j=i+1

cos 2(θi − θj). (3.23)

Thus the optimum sensor placement is given by the set of angles

{θ0, θ1, ...., θN−1} that solve the following optimization problem.

C1 = min
θ0,...,θN−1

N∑
i=1

N∑
j=i+1

cos 2(θi − θj). (3.24)

A possible candidate control law could of course be the gradient descent mim-

imization of C1(θ), i.e.

θ̇(t) = − ∂C1(θ)

∂θ

∣∣∣∣
θ=θ(t)

(3.25)

The difficulty is that this law requires each sensor to know every other sensors

angle thus violating the goal of minimizing the communication overhead.

An alternative cost function could be:

C2(θ) =
N∑
i=1

(cos 2(θi+1 − θi) + cos 2(θi−1 − θi)) . (3.26)

The resulting gradient descent control law would be:

θ̇i(t) = 2 sin(2(θi(t)− θi+1(t)) + 2 sin(2(θi(t)− θi−1(t)). (3.27)

There are several difficulties with this law as well. Suppose θ2(0)− θ1(0) is small but

θ3(0)− θ2(0) is not. Then θ̇2(0) will decrease and θ2 and θ1 will cross, failing to meet



www.manaraa.com

64

our collision avoidance goal. Evidently, the problem rests on the fact that around

zero sin(·) is a decreasing function.

For example in the case of a network with 4 sensor nodes, consider the ini-

tial example network topology shown in Figure. 3.2. The gradient descent algo-

rithm produces the topology in Figure 3.3 which corresponds to the stationary point

{0, π
2
, 3π

2
, 2π} leading to a collision between the sensor nodes at angular positions 0

and 2π. Thus this algorithm can evidently converge to a steady state configuration

that does not conform to (3.6).

Figure 3.2: Initial Network Topology

Instead consider an alternative law that avoids these difficulties. The rest of
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Figure 3.3: Final Network Topology

this chapter uses the following definitions

sinc(x) =
sinx

x
, (3.28)

and

f(θ) =

{
sinc(θ mod 2π) if (|θ| mod 2π) ≤ π

sinc(2π − (θ mod 2π)) else
(3.29)

In particular if θ ∈ [0, π] then f(θ) = sinc(θ). If on the other hand, θ ∈ (π, 2π) then

f(θ) = sinc(2π − θ). Observe that f(.) is an even function.

Then the algorithm is as follows: For all i ∈ {1, ..., N}

θ̇i(t) = f(θi(t)− θi−1(t))− f(θi(t)− θi+1(t)). (3.30)
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Clearly it meets our requirement that each sensor executes its control law using only

communication from two other sensors. It will be shown in the sections that follow

that under (3.7) the clockwise and counterclockwise neighbors of a given sensor do

not change. Thus this law will in fact only require communication from the two

immediate neighbors on either side of a sensor.

3.3 Analysis

This section presents the discussion and analysis on the algorithm represented

by (3.30). Whenever, |θi − θi−1| and |θi − θi+1| are less than or equal to π the first

bullet of (3.29) applies. The first term in (3.30) tends to increase θi, while the second

term decreases it. As for |α| ≤ π, sinc(α) is decreasing in |α|, the i-th sensor moves

away from the neighbor it is closer to.

Now suppose (3.7) holds and for some i, |θi−θi−1| > π. Because of (3.7) unless

sensors cross this must mean that for all j 6= i, |θj − θj−1| ≤ π. Also observe that

sinc(2π − (θi − θi−1)) > sinc(θi − θi−1). (3.31)

Effectively, the second bullet of (3.29) ensures that the contribution of θi−1

to the motion of θi is governed by the smaller of the two possible angular difference

between the angles of xi and xi−1. And again the i-th sensor moves away from the

neighbor it is closer to. For precisely the same reason, and continuity of motion,

under (3.7) sensors cannot cross, and we have the following Theorem.

Theorem 3.3.1 Consider (3.30) under (3.29) and (3.7) the following holds for all
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t ≥ 0:

θ1(t) < θ2(t) < · · · < θN(t). (3.32)

Thus the neighbors of a sensor never change. Further for all i 6= j

0 < |θi(t)− θj(t)| < 2π. (3.33)

The following theorem shows that under (3.7), all stationary points of (3.30)

obey (3.6).

Theorem 3.3.2 Consider (3.30) for N > 2, under (3.29) and (3.7). Then θ̇(t) = 0

iff for some θ∗1 each θi(t) equals the correponding θi given in (3.6).

Proof: First of all suppose each θi(t) equals the correponding θi given in (3.6).

Then for all i ∈ {2, · · · , N},

θi − θi−1 =
2π

N
< π, (3.34)

and

f(θi − θi−1) = sinc

(
2π

N

)
. (3.35)

Thus, for all i ∈ {2, · · · , N − 1}, θ̇i(t) = 0. That θ̇1(t) and θ̇N(t) are also zero follows

from the fact that as

2(N − 1)π

N
> π (3.36)
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f(θ1 − θN) = f

(
2(N − 1)π

N

)
= sinc

(
2π

N

)
.

Suppose now θ̇(t) = 0. Then for all i

f(θi − θi−1) = f(θi − θi+1). (3.37)

Under (3.7) from Theorem 3.3.1), (3.32) and (3.33) hold. Because of (3.33)

|θi − θi−1| > π (3.38)

can hold for at most one i, and for this i

f(θi − θi−1) = sinc(2π − (θi − θi−1)). (3.39)

Observe that if for some 0 ≤ α ≤ β < 2π, sinc(α) = sinc(β) then either α = β

or π < α < β < 2π. In the latter case 0 < 2π − β < 2π − α < π. or

α = 2π − β (3.40)

Thus because of (3.37) for each i either

θi − θi−1 = θi+1 − θi (3.41)
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or

θi − θi−1 = 2π − (θi+1 − θi). (3.42)

Further (3.42) can happen for at most one i. Suppose now (3.42) fails to hold for any

i. Then for all i

|θi − θi−1| ≤ π. (3.43)

In particular this means that

θN ≤ θ1 + π. (3.44)

Thus, as (3.41) holds for all i,

θi − θi−1 =
θN − θ1
N − 1

, (3.45)

resulting in

θN − θ1 =
θN − θ1
N − 1

establishing a contradictionas N > 2. Thus there is precisely one i, namely i = 1 for

which (3.38) holds. From (3.45) one must have:

2π − (θN − θ1) =
θN − θ1
N − 1

. (3.46)

Thus

θN − θ1 =
2π(N − 1)

N
. (3.47)
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Because of (3.45) for all i ∈ {2, · · · , N}

θi − θi−1 =
2π

N
(3.48)

proving the result.

3.4 Convergence Analysis

This section focuses on the convergence of the proposed algorithm to a sta-

tionary point of the form in (3.48). Observe under (3.7), (3.32) and (3.33) holds for

all t. Now consider the function

V (θ) = −
N∑
i=1

W (θi, θi+1) (3.49)

where

W (θi, θi+1) =

{ ∫ θi+1−θi
0

sinc(z)dz if |θi+1 − θi| ≤ π∫ 0

2π−(θi+1−θi) sinc(z)dz else
. (3.50)

When |θi+1 − θi| ≤ π along the trajectories of (3.30)

Ẇ (θi(t), θi+1(t)) =
(
θ̇i+1(t)− θ̇i(t)

)
sinc(θi+1(t)− θi(t)) (3.51)

=
(
θ̇i+1(t)− θ̇i(t)

)
f(θi+1(t)− θi(t)). (3.52)
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Otherwise

Ẇ (θi(t), θi+1(t)) =
(
θ̇i+1(t)− θ̇i(t)

)
sinc(2π − (θi+1(t)− θi(t))) (3.53)

=
(
θ̇i+1(t)− θ̇i(t)

)
f(θi+1(t)− θi(t)). (3.54)

Because of (3.33) V (θ) is bounded from above and below. Further as f(·) is

an even function, and (3.8) holds

−V̇ (θ(t)) =
N∑
i=1

Ẇ (θi(t), θi+1(t)) (3.55)

=
N∑
i=1

(
θ̇i+1(t)− θ̇i(t)

)
f(θi+1(t)− θi(t)) (3.56)

=
N−1∑
i=0

θ̇i(t)f(θi(t)− θi−1(t)) (3.57)

−
N∑
i=1

θ̇i(t)f(θi(t)− θi+1(t)) (3.58)

=
N−1∑
i=2

θ̇i(t) (f(θi(t)− θi−1(t))− f(θi(t)− θi+1(t))) (3.59)

+ θ̇N(t) (f(θN(t)− θN−1(t))− f(θN(t)− θ1(t))) (3.60)

+ θ̇1(t) (f(θ1(t)− θN(t))− f(θ1(t)− θ2(t))) (3.61)

=
N−1∑
i=2

θ̇2i (t) + θ̇2N(t) + θ̇21(t) (3.62)

= ‖θ̇(t)‖2. (3.63)

Thus along the trajectories of (3.30) one has

V̇ (θ(t)) = −‖θ̇(t)‖2. (3.64)



www.manaraa.com

72

Thus from Lasalle’s invariance principle θ(t) converges uniformly asymptotically to

a trajectorty where θ̇ ≡ 0. In view of Theorem 3.3.2 we thus have the following

Theorem.

Theorem 3.4.1 Under the conditions of Theorem 3.3.2, θ(t) converges uniformly to

a point obeying (3.6).

Algorithm 3.1 The Distributed Control Law in Discrete Time

1: N is the number of sensors in the network.
2: k represents the time instant or the iteration counter.
3: Θ is the vector of size N holding the angular position of the sensors.
4: F (Θ) is a vector of size N whose i−th element is given by f(θi−θi−1)−f(θi−θi+1)

where f is defined in (3.29)
5: Initialize Θ[0]=2π. ∗ rand(N, 1)
6: Set the step size to be µ < minimum angular separation between any two neigh-

bors.
7: k = 0
8: while (||F (Θ)||2 < 10−7 or k < 106) do
9: for (i = 1, i ≤ N, i = i+ 1) do
10: θi = θi + µf(θi − θi−1)− f(θi − θi+1)
11: k=k+1
12: end for
13: end while
14: Plot results.

3.5 Simulation Results

Algorithm 3.1 presents the algorithm with the discrete time system that was

used for the simulations.
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3.5.1 Simulation Scenario 1: 3 Node Network

Figure. 3.4 represents the initial network topology with angular positions at

{0; 1.1801; 1.5191; } (all in radians). The step size µ was chosen to be 10−3 which is

smaller than the minimum angular separation. Figure. 3.5 presents the final network

topology produced by the algorithm with angular separation between neighboring

nodes given by 2π
3
.

Figure 3.4: Initial Network Topology

3.5.2 Simulation Scenario 2: 8 Node Network

The algorithm is initialized with sensor angles {0, 0.2304, 0.4536, 1.0996, 1.8434,

3.2385, 5.5435, 5.6320}, (all in radians) presented in Figure. 3.6 . The minimum sen-

sor separation is 0.0885. As shown in Figure. 3.6, sensors 7 and 8 have this minimum
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Figure 3.5: Final Network Topology

separation. The step size µ was chosen to be 10−3 < 0.0885. The algorithm converges

to the final topology shown in Figure. 3.7with uniform angular separation of 2π
8

be-

tween every pair of neighboring sensors. The trajectory of the sensors with respect

to time in Figure 3.8 shows that there are no sensor cross-overs or collisions.

3.6 Conclusions

This chapter presents the design a distributed control law that guides the mo-

tion of the sensors on the circumference of a circle. The speciality of this control law

comes from the fact that this produces the least communication overhead since each

sensor communicates with only two neighboring nodes (one of which is a counter-

clockwise neighbor and the other is a clockwise neighbor). The algorithm is globally

convergent and avoids inter-sensor collisions. The simulation results that demonstrate

the performance of the algorithm.
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Figure 3.6: Initial Network Topology

Figure 3.7: Final Network Topology
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Figure 3.8: Trajectory of the sensors. The X-axis indicates the time in terms of the
iterations and the Y-axis represents the angular position of the sensors on the circle
(scaled by π)

.



www.manaraa.com

77

CHAPTER 4
OPTIMUM SENSOR PLACEMENT FOR ENERGY EFFICIENT

SOURCE LOCALIZATION USING LEAST NUMBER OF ACTIVE
SENSORS

This chapter deals with the problem of designing sensing schemes to optimize

the worst-case estimation performance when only a subset of sensors are operational

in sensor networks. Consider a set of N sensors which are used to estimate an M -

dimensional signal, where N ≥ M . In this problem, only K sensors out of these N

sensors are allowed to operate at a single time instant. This can happen in several

applications scenarios in sensor networks. For example, to maximize the lifetime of a

sensor network, at any single time instant, onlyK sensors are turned on to monitor the

M -dimensional signal. If we assume each time these K sensors are uniformly selected

from the
(
N
K

)
possible subsets, so on average the lifetime of the sensor network is

extended by a factor of N
K

.

As another application example, in hostile environments such as battlefields,

it is very common that only a limited number of sensors are able to survive and

operate as designed. In this application, we assume that K sensors out of the N

sensors are able to survive the hostile environment and are functional in sensing the

M -dimensional signal. While we only have a limited sensing resources at hand, we

however do not want to sacrifice the estimation performance from a limited number

of observations. It is thus helpful to maximize the worst-case performance of the

sensing system, regardless of what set of sensors are used or are able to survive. In

this chapter, we consider the problem of designing optimal sensing in two contexts.
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The first is described in Section 4.1 and the second is described in Section 4.2.

4.1 Sensing Applications: Signal Estimation

With y ∈ RM representing the signal, consider a sensing matrix A ∈ RM×N .

Each of the N sensors generates a real observation represented by an inner product

between y and a column of A. Let KS ⊆ {1, 2..., N}, with cardinality |KS| = K,

be the subset of sensors that are active at a given time. The measurement matrix of

the active sensors is then AKS ∈ RM×K consisting of the K columns of A indexed by

KS. With noise w, the measurement z ∈ RK is

z = ATKSy + w, (4.1)

Suppose the singular values of AKS are σi. Then as long as AKS has full row

rank, the estimation error satisfies

‖ŷ − y‖2 = ‖(AKSATKS)−1AKS(w)‖2 ≤
‖w‖2
σmin

.

To optimize the worst-case performance, we must design A to maximize the smallest

singular value among all the
(
N
K

)
possible submatrices AKS. We assume that each

column of A has unit `2 norm. When M = 2, this is equivalent to minimizing the

maximum condition number among all
(
N
K

)
submatrices AKS. In this chapter, we

consider the case when M = 2 as this is the same as the 2 − D source monitoring

problem.
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4.2 Source Monitoring

As in chapter 2 and 3, suppose we use RSS measurements to get distance

estimates. Without loss of generality, we can assume that y = 0 and that the sensors

need to be placed at a safe distance r2 = 1. Also assume that xi ∈ R2 represent the

sensor locations. Recall that distances from three non-collinear sources are necessary

to localize, [22]. This scenario also applies to the case where only three sensors survive

hostilities.

Suppose the set indices of sensors that are active is denoted by KS and K =

|KS|. Then we are interested in the design of optimum sensor placement such that we

achieve the best worst case performance i.e. the best performance when only 3 sensors

are active. We would like to maximize the minimum eigenvalue of the underlying FIM

in (4.2) overall possible active sensors. In view of the fact that the minimum K needed

for source monitoring is three, in the rest of this chapter we consider K = 3.

FKS =
∑
i∈KS

xix
T
i , (4.2)

With AKS having columns xi, i ∈ KS, we have FKS = AKSA
T
KS. Since

||xi|| = 1 ∀i{1, 2, ...., N}, the trace of the underlying FIM given by FKS in (4.2) is a

constant. Also as FKS ∈ R2×2, maximizing minimum eigenvalue of FKS minimizes

the maximum eigenvalue of FKS thereby minimizing the condition number. However,

since we are interested in the best worst case performance, we would like to minimize

the maximum condition number over all possible KS. Thus the formal problem

considered in this chapter is as follows.
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Problem: Minimize the maximum condition number of FKS among all KS with

cardinality 3 i.e.

min
A∈RM×Nwith unit-normed columns

{
max

KS⊆{1,2,...,N}

λmax(ÃKS)

λmin(ÃKS)

}
. (4.3)

Suppose xi = (cos θi, sin θi)
T then following similar calculations presented in Section

3.2, leads us to the equivalent problem described below.

Problem:

min
θ1,...,θN

max
KS={i1,i2,..,iK}

K∑
j=1

K∑
l=j+1

cos 2(θil − θij).

We solve the problem by splitting it into two cases.

1. The number of sensors in the network N is even.

2. The number of sensors in the network N is odd.

4.3 K = 3, N is an even number

Theorem 4.3.1 Let K = 3 and N be an even number. Then the set of angles

θi = 2π(i−1)
N

mod π, 1 ≤ i ≤ N , minimizes the maximum condition number among

all sub-matrices with K columns. Moreover, they are the unique set of angles that

achieve the smallest maximum condition number for N ≥ 6.

Proof: We first derive a lower bound for the maximum condition number among

all sub-matrices with K = 3 columns; and then show the given set of angles achieve



www.manaraa.com

81

this lower bound.

Suppose that the set of angles 0 ≤ θ∗i < π, 1 ≤ i ≤ N , achieve the smallest

maximum condition number for all submatrices with K = 3 columns. Without loss

of generality, let θ∗1 = 0; and let θ∗i , 1 ≤ i ≤ N , appear sequentially in a counter-

clockwise order. Let θ̃i = 2θ∗i , so we have 0 ≤ θ̃i < 2π.

Lower bound for maximum condition number

Consider |(θ̃(i+2) mod N − θ̃i) mod (2π)| which is the counter-clockwise region going

from θ̃i to θ̃(i+2) mod N . So the summation
∑N

i=1 |(θ̃(i+2) mod N − θ̃i) mod (2π)| =

2×(2π) because each counter-clockwise region between two adjacent angles is summed

twice (see Figure. 4.1 ). Thus there must exist an index 1 ≤ i ≤ N such that for θ̃i,

θ̃(i+1) mod N , and θ̃(i+2) mod N , |(θ̃(i+2) mod N − θ̃i) mod (2π)| ≤ 4π
N

.

For simplicity of notations, we denote these three angles θ̃i, θ̃(i+1) mod N , and

θ̃(i+2) mod N as t1, t2 and t3. Without loss of generality, we assume that 0 = t1 ≤ t2 ≤

t3 ≤ 4π
N

. We how that the smallest condition number that these three angles t1, t2,

and t3 can achieve is when t2 = t1 or t2 = t3.

We consider the scenario where |θ3 − θ1| ≤ 4π
N

remains as a fixed constant.

Define f(θ2) as

f(t2) = cos(t1 − t2) + cos(t1 − t3) + cos(t2 − t3).
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𝜃1  

𝜃2  

𝜃3  
𝜃4  

𝑡1 = 0 

𝑡3 = 𝑡2 

𝑡1 + 𝑡3
2

 

𝑡1 + 𝑡3
2

+ 𝜋 

𝑓′ 𝑡2 ≤ 0  

𝑓′ 𝑡2 ≥ 0  

𝜋 

Figure 4.1: Top: Illustration of the
∑N

i=1 |(θ̃(i+2) mod N − θ̃i) mod (2π)| = 2 × (2π)
for a 4 sensor network. Bottom: Illustration of the regions where f ′(t2) ≥ 0 and
f ′(t2) ≤ 0.
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Its derivative is

f ′(t2) = − sin(t2 − t1) + sin(t3 − t2)

= 2 sin(
t3 + t1

2
− t2) cos(

t3 − t1
2

).

So if (t3−t1) ≤ π, the derivative f ′(t2) is non-positive for t3+t1
2
≤ t2 ≤ t3+t1

2
+π;

and it is non-negative for t3+t1
2

+ π ≤ t2 ≤ t3+t1
2

+ 2π. So if 0 = t1 ≤ t2 ≤ t3 ≤ 4π
N

,

f(t2) is minimized when t2 = t1 or t2 = t3 (see Figure. 4.1). The corresponding f(t2)

is

f(t2 = t1) = f(t2 = t3) = 1 + 2 cos(t1 − t3) ≥ 1 + 2 cos(
4π

N
).

Achievability

Finishing the proof requires us to that the given set of angles θi = 2π(i−1)
N

mod π,

1 ≤ i ≤ N , achieve the lower bound 1 + 2 cos(4π
N

). Let θ̈i = 2θi, thus 0 ≤ θ̈i < 2π. In

the Counter-clockwise, starting from the two angles θ̈i = 0 and θ̈N
2
+1 = 0 (which are

in fact two angles in the same position), re-label these N angles sequentially as θ̂1,

θ̂2, ..., and θ̂N .

Thus the following needs to be proved. For any 3 angles r1, r2 and r3 from

the given set of angles θ̂i satisfy

cos(r1 − r2) + cos(r2 − r3) + cos(r1 − r3) ≤ 1 + 2 cos(
4π

N
).

Without loss of generality, one can assume that r1, r2 and r3 are in a counter-
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clockwise order; and that |(r2 − r1) mod (2π)| is the smallest among |(r2 − r1)

mod (2π)|, |(r3−r2) mod (2π)| and |(r1−r3) mod (2π)|. Clearly, |(r2−r1) mod (2π)| ≤

2π
3

, and |(r2 − r1) mod (2π)| is an integer multiple of 4π
N

.

Suppose |(r2 − r1) mod (2π)| = 0. Then r2 = r1 and |(r1 − r3) mod (2π)| =

|(r3− r2) mod (2π)| ≥ 4π
N

. Similar to the proof of “lower bound”, for such a setting,

the function

f(r3) = cos(r1 − r2) + cos(r1 − r3) + cos(r2 − r3)

is a decreasing function of r3 for r3 ∈ [r1, (r1 + π) mod (2π)]; and an increasing

function of r3 for r3 ∈ [(r1 + π) mod (2π), (r1 + 2π) mod (2π)]. So the maximum of

f(r3) is achieved when |(r1 − r3) mod (2π)| = 4π
N

, where f(r3) = 1 + 2 cos(4π
N

).

Suppose |(r2 − r1) mod (2π)| = 4π
N

. Then |(r1 − r3) mod (2π)| ≥ 4π
N

and

|(r3 − r2) mod (2π)| ≥ 4π
N

. Similar to the reasoning in the “lower bound” part, the

maximum for f(r3) = cos(r1−r2)+cos(r1−r3)+cos(r2−r3) is achieved when |(r3−r2)

mod (2π)| = 4π
N

, r3 6= r1; or |(r1 − r3) mod (2π)| = 4π
N

and r3 6= r2. In both cases,

f(r3) = 2 cos(4π
N

) + cos(8π
N

), which is smaller than the lower bound 1 + 2 cos(4π
N

).

Now suppose |(r2 − r1) mod (2π)| > 4π
N

. Since |(r2 − r1) mod (2π)| ≤ 2π
3

and r3 is certainly outside the counter-clockwise region going from r1 to r2, using the

same reasoning in proving the lower bound, the function

f(r3) = cos(r1 − r2) + cos(r1 − r3) + cos(r2 − r3)
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achieves its maximum when r3 = r2 or r3 = r1. This maximum is

f(r3 = r1) = 1 + 2 cos(r1 − r2),

which is certainly no bigger than 1 + 2 cos(4π
N

).

So the given set of angles indeed achieves the lower bound 1 + 2 cos(4π
N

), and

we have proven the optimality of the given set of angles in minimizing the maximum

condition number among all submatrices with 3 columns.

(Uniqueness)

Moreover, in the proof of the lower bound, when N ≥ 6, (t3 − t1) < π, the derivative

f ′(t2) is negative for t3+t1
2

< t2 <
t3+t1

2
+π; and positive for t3+t1

2
+π < t2 <

t3+t1
2

+2π.

So t3 = t1 or t3 = t2 are the only two places where f(t3) achieves the lower bound

1 + 2 cos(4π
N

). We further notice that the lower bound is achieved only when the

counter-clockwise region between any 3 adjacent angles from θ̃i, 1 ≤ i ≤ N , is equal

to 4π
N

. Otherwise, if there exist one set of 3 adjacent angles from θ̃ such that the

region between them is larger than 4π
N

, there must exist another set of 3 adjacent

angles from θ̃i, 1 ≤ i ≤ N , such that the counter-clockwise region between them is

smaller than 4π
N

. This is because
∑N

i=1 |(θ̃(i+2) mod N − θ̃i) mod 2π| = 2 × (2π). For

these sets of 3 angles, their corresponding cost function f(·) is larger than the derived

cost function lower bound 1 + 2 cos(4π
N

), thus bringing a larger maximum condition

number. This proves for N ≥ 6, θi = 2π(i−1)
N

mod π, 1 ≤ i ≤ N are the unique set of

angles that minimize the maximum condition number.
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It is worth mentioning that when N = 4, the design given in Theorem 4.3.1

is still optimal. However, we have more than one design that can minimize the

maximum condition number. This is because, when counter-clockwise region covered

by 3 angles is π, no matter where the middle angle is, the cost function is −1.

Theorem 4.3.2 For N = 4, K = 3 and M = 2, the set of Θ̂ = 2Θ = {θ̃1, θ̃2, θ̃1 +

π, θ̃2 + π}, where 0 ≤ θ̃1 < π, 0 ≤ θ̃2 < π, minimizes the maximum condition number

over all possible 3× 3 submatrices.

4.4 K = 3, N = 3 or 5

Interestingly, when K = 3, except for the trivial case N = 3, N = 5 is the

only other case where a uniform distributed design indeed minimizes the maximum

condition number.

Theorem 4.4.1 Let K = 3 and N = 3 or 5. Then the set of angles θi = π(i−1)
N

,

1 ≤ i ≤ N , minimizes the maximum condition number among all sub-matrices with

K = 3 columns.

Proof: The case for N = 3 is trivial, so now we only focus on proving the claim for

N = 5.

For the set of angles θ̂i = 2θi = 2π(i−1)
N

, 1 ≤ i ≤ N , it is not hard to check that

3 adjacent angles, denoted by r1, r2 and r3, give the maximum cost function

cos(r1 − r2) + cos(r1 − r3) + cos(r2 − r3) = 2 cos(
2π

5
) + cos(

4π

5
),
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which corresponds to largest condition number.

Let 0 ≤ θ∗i < π, 1 ≤ i ≤ N , be a set of N angles which minimizes the maximum

condition number of all submatrices with 3 columns. For convenience, we consider the

corresponding N angles θ̃i = 2θ∗i , 1 ≤ i ≤ N . Without loss of generality, we assume

θ̃1 = 0; and 0 ≤ θ̃i < 2π are arranged sequentially in a counter-clockwise order as

i ranges from 1 to N . We first prove the following two lemmas before proving that

there must exist at least 4 adjacent-3-angle sets which give the maximum condition

number.

Lemma 4.4.1 The counter-clockwise region between any two adjacent angles (for

example θ̃i and θ̃(i+1) mod N for some i ) is smaller than π.

Proof: Note that the 5 angles partition the circle into 5 regions. If instead the

counter-clockwise region going from θ̃i to θ̃(i+1) mod N is at least π, because the other

4 regions occupy at most π, there must exist three adjacent angles for which the

two counter-clockwise regions covered by them is no bigger than π
2
. For those three

angles, from the same calculation as in Theorem 4.3.1, the smallest cost function

these 3 angles can achieve is

cos(
π

2
− π

2
) + cos(0− π

2
) + cos(0− π

2
) = 1,

which is already bigger than the cost 2 cos(2π
5

) + cos(4π
5

) achieved by the 5 angles

θ̂i = 2θi = 2π(i−1)
N

, 1 ≤ i ≤ N .

Lemma 4.4.2 Let N = 5. In the optimal design θ̃i, 1 ≤ i ≤ N , consider 4 adjacent
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angles r1, r2, r3 and r4, where they are arranged in a counter-clockwise order; and

r2 and r3 are inside the counter-clockwise region going from r1 to r4. (r1, r2, r3) and

(r2, r3, r4) give the same condition number if and only if (r2−r1) mod (2π) = (r4−r3)

mod (2π).

Proof: Without loss of generality, we assume r1 = 0 such that ri, 1 ≤ i ≤ 4, are

all within [0, 2π). Now we only need to show (r1, r2, r3) and (r2, r3, r4) give the same

condition number if and only if r2 − r1 = r4 − r3.

If (r1, r2, r3) and (r2, r3, r4) give the same condition number, we have

cos(r1 − r2) + cos(r1 − r3) + cos(r2 − r3)

= cos(r3 − r2) + cos(r4 − r2) + cos(r4 − r3).

This means

2 cos(
r3 − r2

2
+ r2 − r1) cos(

r3 − r2
2

)

= 2 cos(
r3 − r2

2
+ r4 − r3) cos(

r3 − r2
2

).

Since we have just shown that r3 − r2 is smaller than π, we have

cos(
r3 − r2

2
+ r2 − r1) = cos(

r3 − r2
2

+ r4 − r3).

This means either r2 − r1 = r4 − r3 or r4 − r1 = 2π. The latter is not possible

for a set of angles which achieve the smallest maximum condition number, because
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r4 − r1 = 2π forces the next angle r5 to be aligned with both r1 and r4. This

gives a condition number of ∞ for the three angles r1, r4 and r5. So we must have

r2 − r1 = r4 − r3.

In the optimal design θ̃i, 1 ≤ i ≤ N , we assume that {θ̃1, θ̃2, θ̃3} is an adjacent-

3-set which corresponds to the maximum condition number.

4.4.1 (At Least 2 adjacent-3-angle Sets Giving the Maximum Condition Number)

Lemma 4.4.3 θ̃1, θ̃2 and θ̃3 can not be the unique set of 3 angles that have the largest

condition number.

Proof: We prove by contradiction. Suppose {θ̃1, θ̃2, θ̃3} is the unique set of 3

adjacent angles that have the largest condition number. Then we must have θ̃3− θ̃1 <

π. Suppose instead that θ̃3 − θ̃1 = π or θ̃3 − θ̃1 > π.

If θ̃3− θ̃1 = π, the cost function for the set of 3 angles θ̃1, θ̃2 and θ̃3 is equal to

the cost function for the set of 3 angles θ̃3, θ̃5 and θ̃1. This is a contradiction to our

assumption.

If θ̃3 − θ̃1 > π, then θ̃2 − θ̃1 = θ̃3 − θ̃2. Otherwise, we can always shift θ̃2

towards θ̃1+θ̃3
2

by a sufficiently small amount and strictly decrease the cost function

for θ̃1, θ̃2 and θ̃3. Since the cost functions for any other 3 adjacent angles are strictly

smaller than the original cost function of θ̃1, θ̃2 and θ̃3, their cost functions will

remain smaller than the new revised cost function of θ̃1, θ̃2 and θ̃3. So we have just

decreased the largest condition number, which is a contradiction. So we must have

θ̃2 − θ̃1 = θ̃3 − θ̃2. However the cost function for θ̃4, θ̃5 and θ̃1 is lower bounded by
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2 cos(π
2
) + cos(π) = −1, which is larger than the cost function for θ̃1, θ̃2 and θ̃3. This

is contradictory to the assumption that the set of θ̃1, θ̃2 and θ̃3 corresponds to the

maximum condition number.

So we must have θ̃3 − θ̃1 < π. In this case, if we shift θ̃3 counter-clockwise

by a sufficiently small amount δ, we will strictly decrease the cost function for θ̃1, θ̃2

and θ̃3. Since by our assumption, the cost function of any other 3 adjacent angles

were strictly smaller than the original cost function of {θ̃1, θ̃2, θ̃3}, their cost functions

will stay smaller than the new revised cost function for {θ̃1, θ̃2, θ̃3}. So we have just

strictly decreased the maximum condition number of the optimal design, which is not

possible.

4.4.2 (At Least 3 adjacent-3-angle Sets Giving the Maximum Condition Number)

Lemma 4.4.4 {θ̃1, θ̃2, θ̃3} and {θ̃2, θ̃3, θ̃4} can not be the only 2 sets of 3 adjacent

angles which correspond to the maximum condition number.

Proof: We prove by contradiction. Suppose {θ̃1, θ̃2, θ̃3} and {θ̃2, θ̃3, θ̃4} are the only

two sets of 3 adjacent angles that have the largest condition number. This means

θ̃4 − θ̃3 = θ̃2 − θ̃1 = α for some α ≥ 0; and θ̃2 − θ̃1 = β for some β ≥ 0. Note that

2α + β < 2π because, otherwise, θ̃4, θ̃5 and θ̃1 are forced to be in the same position,

giving rise to a condition number of ∞ for these three angles.

From Lemma 4.4.1, we know β < π. For such a β, it is not hard to check that

under the constraint 2α + β ≤ 2π, the cost function cos(α) + cos(β) + cos(α + β)

achieves its unique minimum when 2α + β = 2π. Moreover, the cost function is a
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strictly decreasing function as α grows from 0 to π − β
2
. So if we shift θ̃4 counter-

clockwise by a small amount δ > 0 and shift θ̃1 clockwise by the same small amount

δ > 0, then as long as 2α+ β < 2π, this will strictly decrease the condition numbers

simultaneously for {θ̃1, θ̃2, θ̃3} and {θ̃2, θ̃3, θ̃4}.

Since the cost functions for any other 3 adjacent angles were strictly smaller

than the original cost function of {θ̃1, θ̃2, θ̃3}, their cost functions will stay smaller

than the new revised cost function of {θ̃1, θ̃2, θ̃3}. So we have just strictly decreased

the maximum condition number, which is a contradiction to our assumption of an

optimal design.

By symmetry, in the same spirit, we have

Lemma 4.4.5 {θ̃1, θ̃2, θ̃3} and {θ̃1, θ̃2, θ̃5} can not be the only 2 sets of 3 adjacent

angles which have the largest condition number.

We can also prove:

Lemma 4.4.6 {θ̃1, θ̃2, θ̃3} and {θ̃3, θ̃4, θ̃5} can not be the only 2 sets of 3 adjacent

angles which correspond to the maximum condition number.

Proof: Again, we prove by contradiction. Suppose {θ̃1, θ̃2, θ̃3} and {θ̃3, θ̃4, θ̃5} are

the only two sets of 3 adjacent angles that have the largest condition number.

We first assume that θ̃5 − θ̃3 6= π.

We claim that if θ̃5 − θ̃3 > π, then θ̃4 = θ̃3+θ̃5
2

. This is because otherwise,

we can shift θ̃4 toward the middle point θ̃3+θ̃5
2

by a sufficiently small amount, thus

strictly decreasing the condition number for {θ̃3, θ̃4, θ̃5}. This will leave {θ̃1, θ̃2, θ̃3} as
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the unique adjacent-3-set with the maximum condition number, which is not possible

by Lemma 4.4.3.

But if θ̃5 − θ̃3 > π, we must have θ̃3 − θ̃1 < π. However, then {θ̃1, θ̃2, θ̃3} and

{θ̃3, θ̃4, θ̃5} can not have the same condition number. In fact, from analyzing the cost

function, when θ̃3 − θ̃1 < π, θ̃5 − θ̃3 > π and θ̃4 = θ̃3+θ̃5
2

, {θ̃3, θ̃4, θ̃5} has a strictly

smaller condition number than {θ̃1, θ̃2, θ̃3}.

So when θ̃5− θ̃3 6= π, we must have θ̃5− θ̃3 < π and, symmetrically, θ̃3− θ̃1 < π.

Then θ̃4 = θ̃3 or θ̃5; θ̃2 = θ̃1 or θ̃3; and θ̃3 − θ̃1 = θ̃5 − θ̃3. This is because, if θ̃4 6= θ̃3

and θ̃4 6= θ̃5, we can always shift θ̃4 towards whatever is closer to θ̃4 among θ̃3 and

θ̃5. This will strictly decrease the corresponding cost function, and leaving only one

adjacent-3-angle set having the maximum condition number, which is not possible by

Lemma 4.4.3.

But then by increasing θ̃3 − θ̃1 = θ̃5 − θ̃3 by a sufficiently small amount δ > 0,

we will strictly decrease the condition numbers for {θ̃1, θ̃2, θ̃3} and {θ̃3, θ̃4, θ̃5}. Since

the cost functions for the other sets of 3 adjacent angles were strictly smaller than the

original cost function of {θ̃1, θ̃2, θ̃3} and {θ̃3, θ̃4, θ̃5}, their cost functions will remain

smaller than the new revised cost function of {θ̃3, θ̃4, θ̃5}. So we have just decreased

the maximum condition number of the optimal design, which is not possible.

We now consider the possibility that θ̃5 − θ̃3 = π. Because {θ̃3, θ̃4, θ̃5} and

{θ̃1, θ̃2, θ̃3} both have the maximum condition number; and (θ̃3− θ̃1) + (θ̃5− θ̃3) ≤ 2π,

with the cost function cos(α) + cos(β) + cos(α+ β) achieving the minimum −1 when

α + β ≤ π, we must have θ̃3 − θ̃1 = π too. Then θ̃5 and θ̃1 must be in the same
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position, and so {θ̃1, θ̃2, θ̃5} must have a condition number no smaller than {θ̃1, θ̃2, θ̃3}

since cos(θ̃2− θ̃1)+cos(θ̃1− θ̃5 +2π)+cos(θ̃2− θ̃5 +2π) achieves its minimum −1 with

θ̃2 = π when θ̃2 ≤ π. This is contradictory to our assumption that {θ̃1, θ̃2, θ̃3} and

{θ̃3, θ̃4, θ̃5} are the only 2 sets of 3 adjacent angles which have the maximum condition

number.

By symmetry, we can also prove

Lemma 4.4.7 {θ̃1, θ̃2, θ̃3} and {θ̃4, θ̃5, θ̃1} can not be the only 2 sets of 3 adjacent

angles which have the largest condition number.

4.4.3 (At Least 4 adjacent-3-angle Sets Giving the Maximum Condition Number)

Now we consider the cases where more angle sets have the maximum condition

number.

Lemma 4.4.8 {θ̃1, θ̃2, θ̃3}, {θ̃2, θ̃3, θ̃4} and {θ̃3, θ̃4, θ̃5} can not be the only 3 sets of 3

adjacent angles which have the largest condition number.

Proof: We prove by contradiction. Let us assume {θ̃1, θ̃2, θ̃3}, {θ̃2, θ̃3, θ̃4} and

{θ̃3, θ̃4, θ̃5} are the only 3 sets of 3 adjacent angles which have the largest condition

number. Apparently, θ̃2 − θ̃1 = θ̃4 − θ̃3 = α and θ̃3 − θ̃2 = θ̃5 − θ̃4 = β for some α ≥ 0

and β ≥ 0.

We must have α+ β < π. Otherwise, angle θ̃5 will be in the same position as

θ̃1. But, as argued in Lemma 4.4.6, this implies {θ̃5, θ̃1, θ̃2} can not have a smaller

condition number than {θ̃1, θ̃2, θ̃3}, which is a contradiction to the assumption that

{θ̃1, θ̃2, θ̃3}, {θ̃2, θ̃3, θ̃4} and {θ̃3, θ̃4, θ̃5} are the only 3 sets of 3 adjacent angles which
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have the largest condition number.

So we can always increase α and β by a sufficiently small amount δ to de-

crease the condition number for {θ̃1, θ̃2, θ̃3}, {θ̃2, θ̃3, θ̃4} and {θ̃3, θ̃4, θ̃5}. Since the

cost functions for any other 3 adjacent angles were strictly smaller than the original

cost function of {θ̃1, θ̃2, θ̃3}, {θ̃2, θ̃3, θ̃4} and {θ̃3, θ̃4, θ̃5}, their cost functions will remain

smaller than the new revised cost function of θ̃1, θ̃2 and θ̃3. So we have just decreased

the maximum condition number, which is a contradiction to our assumption.

We also have:

Lemma 4.4.9 {θ̃1, θ̃2, θ̃3}, {θ̃2, θ̃3, θ̃4} and {θ̃4, θ̃5, θ̃1} can not be the only 3 sets of 3

adjacent angles which have the largest condition number.

Proof: Again, we prove by contradiction. Suppose that {θ̃1, θ̃2, θ̃3}, {θ̃2, θ̃3, θ̃4} and

{θ̃4, θ̃5, θ̃1} are the only 3 sets of 3 adjacent angles which have the largest condition

number.

Firstly, we assume that the counter-clockwise region between angle θ̃4 and

angle θ̃1 is smaller than π. Then we know angle θ̃5 must be in the same position as

angle θ̃4 or angle θ̃1. Otherwise, as we discussed earlier, we can always shift θ̃5 such

that the cost function for {θ̃4, θ̃5, θ̃1} is decreased, which will reduce us to the scenario

in Lemma 4.4.4.

Suppose θ̃5 is in the same position as angle θ̃4. From our assumption, the cost

function for {θ̃3, θ̃4, θ̃5} is smaller than the cost function for {θ̃2, θ̃3, θ̃4}. This is not

possible, because θ̃4 − θ̃3 < π, and θ̃5 − θ̃4 = 0 and the cost function for {θ̃2, θ̃3, θ̃4} is
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maximized when θ̃2 = θ̃3 under the condition θ̃2 ≤ θ̃3.

By symmetry of θ̃5 with respect to θ̃4 and θ̃1, when θ̃5 is in the same position

as θ̃1 , we also get a contradiction.

Secondly, we assume that the counter-clockwise region going from θ̃4 to θ̃1 is

equal to π. In this case, the cost function for {θ̃5, θ̃1, θ̃4} does not depend on the

location of angle θ̃5. Since the cost function for {θ̃4, θ̃5, θ̃1} is −1 and θ̃4− θ̃1, in order

for {θ̃1, θ̃2, θ̃3}, {θ̃2, θ̃3, θ̃4} and {θ̃4, θ̃5, θ̃1} to have the same cost function, we must

have θ̃2 = θ̃1 = 0 and θ̃3 = θ̃4 = π. This is contradictory to the assumption that

{θ̃2, θ̃3, θ̃4} has a larger cost function than {θ̃3, θ̃4, θ̃5}.

Thirdly, we assume that the counter-clockwise region going from θ̃4 to θ̃1 is

larger than π. Similar to earlier analysis, θ̃5 must at the middle point of the counter-

clockwise region going from θ̃4 to θ̃1. However, we get a contradiction because the cost

function for {θ̃4, θ̃5, θ̃1} is no bigger than −1; while the cost function for {θ̃1, θ̃2, θ̃3} is

bigger than −1 since θ̃3 − θ̃1 < π.

So in summary, we have proven this lemma.

In the same spirit, we can prove

Lemma 4.4.10 {θ̃1, θ̃2, θ̃3}, {θ̃3, θ̃4, θ̃5} and {θ̃5, θ̃1, θ̃2} can not be the only 3 sets of

3 adjacent angles which have the largest condition number.

Lemma 4.4.11 {θ̃1, θ̃2, θ̃3}, {θ̃3, θ̃4, θ̃5} and {θ̃4, θ̃5, θ̃1} can not be the only 3 sets of

3 adjacent angles which have the largest condition number.

So the only left four possibilities are
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• {θ̃1, θ̃2, θ̃3}, {θ̃2, θ̃3, θ̃4}, {θ̃3, θ̃4, θ̃5}, and {θ̃4, θ̃5, θ̃1} are the sets of 3 adjacent

angles which have the largest condition number.

• {θ̃1, θ̃2, θ̃3}, {θ̃2, θ̃1, θ̃5}, {θ̃1, θ̃5, θ̃4}, and {θ̃5, θ̃4, θ̃3} are the sets of 3 adjacent

angles which have the largest condition number.

• {θ̃1, θ̃2, θ̃3}, {θ̃2, θ̃3, θ̃4}, {θ̃3, θ̃4, θ̃5}, and {θ̃5, θ̃1, θ̃2} are the sets of 3 adjacent

angles which have the largest condition number.

• {θ̃1, θ̃2, θ̃3}, {θ̃2, θ̃3, θ̃4}, {θ̃4, θ̃5, θ̃1}, and {θ̃5, θ̃1, θ̃2} are the sets of 3 adjacent

angles which have the largest condition number.

These four cases are symmetric to each other, so we consider the first case and

the conclusion carries over to the other three cases accordingly.

The first case implies that θ̃2 − θ̃1 = θ̃4 − θ̃3 = θ̃1 − θ̃5 + 2π = α for some

constant α ≥ 0; and θ̃3 − θ̃2 = θ̃5 − θ̃4 = β for some constant β ≥ 0.

We note that {θ̃1, θ̃2, θ̃5} are adjacent 3 angles with α between θ̃1 and θ̃2;

and α between {θ̃1 and θ̃5}. We also notice that α ≥ β ≥ 0 (because α + β ≤ π

and 2α + β ≤ 2π. Under these constraints, it is not hard to check that the cost

function cos(α) + cos(α) + cos(2α) for {θ̃5, θ̃1, θ̃2} is bigger than the cost function

cos(α) + cos(β) + cos(α+β) for {θ̃1, θ̃2, θ̃3} if and only if α ≥ β. ) and 3α+ 2β = 2π.

In order to minimize the largest condition number, we should make the cost function

cos(α) + cos(β) + cos(α + β) as small as possible.

Under the constraints that α ≥ β ≥ 0 and 3α+2β = 2π, we have 2π
5
≤ α ≤ 2π

3
.

Within this range, the cost function cos(α)+cos(β)+cos(α+β) achieves its minimum

when α = β = 2π
5

. If α = β, the cost function is equal to 2 cos(2π
5

) + cos(4π
5

) ≈
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−0.1910.

So indeed the optimal solution is given by θi = π(i−1)
N

, 1 ≤ i ≤ N .

4.5 K = 3, N = 7

One might think that the uniform distributed design is optimal for N = 7.

However, this is not true from the following lemma.

Theorem 4.5.1 Let K = 3 and N = 7 . Then θi = 2π(i−1)
N+1

mod π, 1 ≤ i ≤

N , minimizes the maximum condition number among all sub-matrices with K = 3

columns.

Proof: Among θ̂i = 2θi = 4π(i−1)
N+1

mod 2π, 1 ≤ i ≤ N , it is not hard to check that

3 adjacent angles, denoted by r1, r2 and r3 with r1 = r2, give the maximum cost

function

cos(r1 − r2) + cos(r1 − r3) + cos(r2 − r3) = 2 cos(
4π

N + 1
) + 1.

This means the submatrix corresponding to such 3 adjacent angles generate the max-

imum condition number among all possible 3-column submatrices.

So in order to prove that θ̂i = 2θi = 4π(i−1)
N+1

mod 2π, 1 ≤ i ≤ N , minimizes the

maximum condition number among all 3-column submatrices, it is enough to show

θ̂i = 2θi = 4π(i−1)
N+1

mod 2π, 1 ≤ i ≤ N , minimizes the maximum condition number

among all the adjacent-3-angle sets. Let us assume that N angles 0 ≤ θ̃ = 2θ∗i < 2π,

1 ≤ i ≤ N achieves the smallest maximum condition number among all the adjacent-
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3-angle sets. Without sacrificing generality, let θ̃1 = 0 and θ̃i be arranged sequentially

in a counter-clockwise order as i goes from 1 to N .

Lemma 4.5.1 In the optimal design θ̃i, 1 ≤ i ≤ N , the counter-clockwise region

covered by any three adjacent angles is no bigger than π for N = 7; and smaller than

π for N ≥ 9. The only scenario where the counter-clockwise region covered by one

adjacent-3-angle set is π is when N = 7 and the 7 angles are respectively 0, 0, π/2,

π/2, π,π and 3π
2

(up to rotations of these angles).

Proof: Suppose instead in the optimal design, the counter-clockwise region covered

by some three adjacent angles r1, r2 and r3 is larger than π. Then there must exist

3 adjacent angles for which the counter-clockwise region covered by them is smaller

than 3π
N−1 ≤

π
2

because the sum of the counter-clockwise regions covered by all the 3

adjacent angles is 4π (Please see the proof in Theorem 4.3.1). This means that the cost

function for r1, r2 and r3 is larger than 2 cos( 3π
N−1) + 1 (when r2 is aligned with r1 or

r3). Note that, 2 cos( 3π
N−1) + 1 is equal to the maximum cost function 2 cos( 4π

N+1
) + 1

given by the to-be-proven optimal design θ̂i = 2θi = 4π(i−1)
N+1

mod 2π, 1 ≤ i ≤ N ,

when N = 7; and is bigger than 2 cos( 4π
N+1

) + 1 when N ≥ 9. This is contradictory

to our optimal design. So in the optimal design θ̂i = 2θi = 4π(i−1)
N+1

mod 2π, the

counter-clockwise region covered by any three adjacent angles is no bigger than π for

N ≥ 7.

When N = 7 and the counter-clockwise region covered by one adjacent-3-angle

set is π, the counter-clockwise region covered by each one of the other adjacent-3-
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angle sets is forced to be pi
2

, The only way for that to happen is that the 7 angles θ̃i,

1 ≤ i ≤ N , are 0, 0, π/2, π/2, π,π and 3π
2

(up to rotations of these angles).

Note that the same argument can show that the counter-clockwise region cov-

ered by any three adjacent angles is smaller than π for N ≥ 9.

In the optimal design θ̃i, 1 ≤ i ≤ N , there are N sets of 3 adjacent angles, and

we denote each set by its counter-clockwise central angle. For example, we denote the

set of three angles {θ̃(j−1) mod N , θ̃j, θ̃(j+1) mod N} for some 1 ≤ j ≤ N as its central

angle {θ̃j}. We assume that θ̃1, θ̃2 and θ̃3 are three angles which correspond to the

largest condition number.

We now prove the following lemma:

Lemma 4.5.2 In the optimal design θ̃i, 1 ≤ i ≤ N , N ≥ 7, there do not exist

≥ 2 consecutive adjacent-3-angle sets (for example {θ̃j} and {θ̃(j+1) mod N} for some

1 ≤ j ≤ N) which have smaller condition numbers than the maximum condition

number.

Proof: We prove by contradiction. Suppose that for some j, {θ̃j} and {θ̃(j+1) mod N}

both have smaller condition numbers than the maximum condition number. We also

assume that one of {θ̃(j−1) mod N} and {θ̃(j+2) mod N} is an adjacent-3-angle set cor-

responding to the maximum condition number. Notice that we can always find such

a j if there exist ≥ 2 consecutive adjacent-3-angle sets which have smaller condition

numbers than the maximum condition number.
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By Lemma 4.5.1, any adjacent angle widths γ1 and γ2 satisfy γ1 +γ2 ≤ π. The

cost function for cos(γ1) + cos(γ2) + cos(γ1 + γ2) strictly decreases if we increase γ1

and γ2 simultaneously by a sufficiently small amount.

Suppose that {θ̃j} spans two regions with counter-clockwise angle width α ≥ 0

and β ≥ 0; and that {θ̃(j+1) mod N} spans two regions with counter-clockwise angle

width β and γ.

If β > 0, we can always reduce β by a sufficiently small enough amount and

increase every region involved in all the adjacent-3-angle sets corresponding to the

maximum condition number by an appropriate small amount such that the angle

widths of the N regions still sum up to 2π. In this way, we have just strictly de-

creased the maximum condition number among all the adjacent-3-angle sets. This is

contradictory to the optimal design assumption.

If β = 0, since every two adjacent angles are no more than π apart, {θ̃(j−1) mod N}

has no bigger condition number than {θ̃j} and {θ̃(j+2) mod N} has no bigger condi-

tion number than {θ̃(j+1) mod N}. This is contradictory to the assumption that {θ̃j}

and {θ̃(j+1) mod N} both have smaller condition numbers than the maximum condi-

tion number; and one of {θ̃(j−1) mod N} and {θ̃(j+2) mod N} is an adjacent-3-angle set

corresponding to the maximum condition number.

Lemma 4.5.3 Let N = 7. Suppose θ̃i, 1 ≤ i ≤ N , is an optimal design which

minimizes the maximum condition number among all adjacent-3-angle sets. Then

there exists at most 1 adjacent-3-angle set which has smaller condition number than

the maximum condition number among all adjacent-3-angle sets.
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Proof: We prove this lemma by contradiction.

Without loss of generality, suppose that {θ̃1} has a condition number smaller

than the maximum condition number and there exist ≥ 2 adjacent-3-angle sets which

have smaller condition numbers than the maximum condition number among all

adjacent-3-angle sets. Then there must exist a sequence of consecutive angles, say θ̃i,

1 ≤ i ≤ l, for some 3 ≤ l ≤ N , such that any adjacent-3-angle set {θ̃j}, 2 ≤ j ≤ l− 1

has the maximum condition number while the first counter-clockwise adjacent-3-angle

set {θ̃l} and the first clockwise adjacent-3-angle set {θ̃1} have smaller condition num-

bers than the maximum condition number.

Since {θ̃j}, 2 ≤ j ≤ l − 1, have the equal maximum condition number, the

counter-clockwise regions between {θ̃j}, 1 ≤ j ≤ l must alternate between α ≥ 0 and

β ≥ 0, where α + β ≤ π. Without loss of generality, we assume that α ≥ β. For

now we also assume that α + β < π. From Lemma 4.5.1, when α + β = π, only 1

adjacent-3-angle set has a smaller than the maximum condition number.

We first consider the case where l is an odd number, namely we have an even

number of regions between angle θ̃1 and angle θ̃l. Since α + β < π, we claim that

β must be equal to 0. Suppose instead β 6= 0. Then we can shift the even-number-

indexed angles θ̃j, 1 ≤ j ≤ l, counter-clockwise by a sufficiently small amount. This

will strictly decrease the condition numbers for {θ̃j}, 2 ≤ j ≤ l − 1. Since {θ̃l}

and {θ̃1} also have strictly smaller condition numbers than the maximum condition

number, thus we have ≥ 2 consecutive adjacent-3-angle sets which have the smaller

condition number than the maximum condition number. This forms a contradiction
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by Lemma 4.5.2.

So we must have β = 0. However, this implies {θ̃(l+1) mod N} has a condition

number no bigger than that of {θ̃l}. Thus we have two consecutive adjacent-3-angle

sets {θ̃l} and {θ̃(l+1) mod N} which have smaller condition numbers than the maximum

condition number. This forms a contradiction by Lemma 4.5.2.

We then consider the case where l is an even number. Since l ≥ 3, such a

number can only be l = 4 or l = 6.

When l = 4, then {θ̃6} must also have a smaller condition number than the

maximum condition number. This is because, from Lemma 4.5.2, {θ̃5} and {θ̃7} can

not have smaller condition numbers than the maximum condition number. Moreover,

if {θ̃6} also has the maximum condition number, {θ̃j mod N}, 4 ≤ j ≤ N + 1, are then

consecutive angles such that {θ̃5}, {θ̃6} and {θ̃7} all have the maximum condition

numbers, which is not possible by our previous discussion of the cases when l is an

odd number.

However, when {θ̃6} has a smaller condition number than the maximum con-

dition number, there are an even number (in fact, 2,) of regions between angle θ̃4 and

angle θ̃6, which is not possible by our previous discussion.

So in summary, the original assumption of ≥ 2 adjacent-3-angle sets having

larger than maximum condition number cannot hold. There exists at most 1 adjacent-

3-angle set which has smaller condition number than the maximum condition number.

If every adjacent-3-angle set has the same condition number as the maximum

condition number, then the region between every angle must be equal. So the cost
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function for the maximum condition number should be 2 cos(2π
7

) + cos(4π
7

).

If there is exactly 1 adjacent-3-angle set which has a smaller condition number

than the maximum condition number, and {θ̃1} is the unique adjacent-3-angle set

that has the smallest condition number, then θ̃i, 1 ≤ i ≤ 7, can be respectively

denoted by 0, α, α + β, 2α + β, 2(α + β), 3α + 2β, and 3α + 3β, where α ≥ 0,

β ≥ 0 and α > β and 4α + 3β = 2π. The cost function for the maximum condition

number cos(α) + cos(β) + cos(α + β) is thus minimized when β = 0 and α = 2π
4

for

α ≥ 0, β ≥ 0 and α > β and 4α + 3β = 2π. This cost function is smaller than the

cost function of 2 cos(2π
7

) + cos(4π
7

), so θi = 2π(i−1)
N+1

mod 2π, 1 ≤ i ≤ N is indeed the

optimal design.

4.6 K = 3, N ≥ 9 is an Odd Number

Theorem 4.6.1 Let K = 3 and N ≥ 9 be an odd number. Then the set of angles

θi = 2π(i−1)
N+1

mod π, 1 ≤ i ≤ N , minimizes the maximum condition number among

all sub-matrices with K = 3 columns.

Proof: The proof of this theorem follows the proof of Theorem 4.5.1. The compli-

cation compared with Theorem 4.5.1 comes from the fact that we need to prove the

following lemma instead of Lemma 4.5.3.

Lemma 4.6.1 Let us take N ≥ 9. Suppose that θ̃i, 1 ≤ i ≤ N , is an optimal

design which minimizes the maximum condition number among all adjacent-3-angle

sets. Then there exists at most 1 adjacent-3-angle set which has a smaller condition

number than the maximum condition number among all adjacent-3-angle sets.
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Proof: We prove this lemma by contradiction.

Suppose that there exists ≥ 2 adjacent-3-angle sets which have smaller condi-

tion numbers than the maximum condition number among all adjacent-3-angle sets.

From Lemma 4.5.2, we can always partition the N angles into distinct blocks by using

θ̃j’s with {θ̃j} having a strictly smaller condition number than the maximum condi-

tion number as the boundary angles between different blocks. From Lemma 4.5.2,

there must exist at least one angle between two boundary angles. Without loss of

generality, suppose θ̃1 and θ̃l, 3 ≤ l ≤ N , are two neighboring boundary angles. Since

{θ̃j}, 2 ≤ j ≤ l−1, have the equal maximum condition number, the counter-clockwise

regions between {θ̃j}, 1 ≤ j ≤ l must alternate between α ≥ 0 and β ≥ 0, where

α + β < π according to Lemma 4.5.1.

We first consider the case when l is an odd number, namely we have an even

number of regions between angle θ̃1 and angle θ̃l. Without loss of generality, we

assume that α ≥ β when l is an odd number. Since α + β < π, from the same

reasoning as in the proof of Lemma 4.5.3 we know this is not possible.

We then consider the case when l is an even number. If l is an even number,

we divide into two scenarios: α ≥ β or α ≤ β.

If α ≤ β, we can simultaneously shift the even-numbered angles θ̃j, j =

2, 4, ..., l−2, clockwise by the same sufficiently small angle δ > 0. Note that this shift

will not increase the maximum condition number if δ is sufficiently small. However,

this will create two consecutive adjacent-3-angle sets {θ̃2} and {θ̃1} which have smaller

condition numbers than the maximum condition number. According to Lemma 4.5.2,
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this is contradictory to our assumption of an optimal design.

We now assume α > β and the number of regions in each block is an odd

number. Consider two neighboring blocks separated by a single angle j such that {θ̃j}

is an adjacent-3-angle set which has a smaller condition number than the maximum

condition number. Suppose that the second block is in the clockwise direction of

the first block. The counter-clockwise region in the first block alternates between α

and β; the counter-clockwise region in the second block alternates between α1 and β1

with α1 ≥ β1 (otherwise we are done by the discussion in last paragraph). Since the

adjacent-3-angle sets inside each block have the maximum condition number, without

loss of generality, we have α1 ≤ α, and β1 ≥ β. If we change the regions of the 2-nd

block to be β1, α1, β1, α1, ..., α1, and α1. Since α1 ≤ α and β1 ≥ β, in this change,

we do not increase the condition number of {θ̃j}. It is not hard to check that as

long as α1 + β1 < π, the cost function cos(α1) + cos(α1) + cos(2α1) is smaller than

the cost function cos(α1) + cos(β1) + cos(α1 + β1). So in this change, we do not

increase the maximum condition number among adjacent-3-angle sets, while creating

two consecutive adjacent-3-angle sets at the clockwise end of the second block, which

is a contradiction from Lemma 4.5.2.

So in summary, there exists at most 1 adjacent-3-angle set which has smaller

condition number than the maximum condition number.

So in the optimal design, the angles must alternate like α, β, ..., α, β, α, where

α ≥ β, and N+1
2
α+ N−1

2
β = 2π. For N ≥ 9, the optimal angle allocation for α is 4π

N+1

and β = 0.
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Figure 4.2: Illustration of angular separation between columns of the sensing ma-
trix/sensors in the network. Top left and right figures represent the proposed angular
separation for the columns of the sensing matrix (optimum sensor placement with
6 columns/sensors) and the doubled angles respectively. Middle figures represents
design for the matrix with 7 columns while the bottom figures represent the optimum
design for 5 columns/sensors.
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Figure. 4.2 shows the proposed optimum angular separation between columns

of the sensing matrix/sensors in the network that produce the best worst case condi-

tion number.

4.7 Simulation Results

We now present simulation results for 3 experiments.

1. We plot the worst case condition number versus the number of sensors in the

network (N).

2. We plot the worst mean square signal estimation error versus the number of

sensors in the network (N).

3. We also plot the mean square error in source location estimation versus the

Signal to Noise Ratio.

4.7.1 Worst Case Condition Number vs N

We compare the maximum condition number among all the possible 2 × 3

submatrices in three different cases shown in Figure.4.4. The cases are, (i) when

successive sensors are placed in a semicircle π/N apart, (ii) they are placed 2π/N

apart, and (iii) they are placed in a manner specified by our theorems. That the

performance of (ii) matches (iii) for even N conforms with earlier observations.

4.7.2 Worst mean square signal estimation error vs N

Consider the setting of Section 4.1 We compare in Figure. 4.5 the worst case

mean square error (MSE) yielded by (i) above with that yielded by the postulated op-
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Figure 4.3: Illustration of the proposed solution for a 8 node network and a 7 node
network angles in the range [0, 2π)

.
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Figure 4.4: Worst case Condition Number Versus N

timum for sensors ranging in number from 3 to 15. The signal x in (4.1) is [9, 9]T .The

noise in each measurement is N ∼ (0, 1). For each value N , the worst case estima-

tion error ||x̂ − x||2 was averaged over 2000 iterations. Again the predicted optimal

placement is superior.

4.7.3 Monitoring Error vs SNR

Fig. 4.6 compares the Maximum Likelihood estimation of a source at the origin

with 10 sensor network, from RSS under log-normal shadowing in the case where the

sensors are placed as in (i) against optimal placement. The latter’s superiority is

evident. The simulations are performed using gradient descent method on the ML

cost function. The Signal to Noise Ratio (SNR) is defined as ratio of the average
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Figure 4.5: Worst case estimation error versus the number of columns in the sensing
matrix.

signal strength over all the nodes in the network to the standard deviation of the

gaussian term in log-normal shadowing model.

4.8 Conclusions

In this chapter we proposed the problem of designing optimal 2×N (M ≤ N)

sensing matrices which minimize the maximum condition number of all the submatri-

ces of K = 3 columns. Such matrices minimize the worst-case estimation errors when

only K sensors out of N sensors are available for sensing at a given time. An interest-

ing observation to make is that minimizing the maximum coherence between columns

does not always guarantee minimizing the maximum condition number which would

have been the case if all the sensors were active.
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CHAPTER 5
COPRIME CONDITIONS FOR FOURIER SAMPLING FOR SPARSE

RECOVERY

As discussed in Chapter 1, the spark of a matrix is the smallest number of

linearly dependent columns of a matrix. An alternate interpretation of the definition

of the spark is if the spark of a matrix is m, then any subset of m − 1 columns

of the matrix are linearly independent. This chapter considers the spark of L × N

submatrices of the N×N Discrete Fourier Transform (DFT) matrix. The motivation

comes from applications of compressed sensing such as MRI and synthetic aperture

radar, where device physics dictates the measurements to be Fourier samples of the

signal. Consequently the observation matrix comprises certain rows of the DFT

matrix. To recover an arbitrary k-sparse signal, the spark of the observation matrix

must exceed 2k + 1. The technical question addressed in this work is how to choose

the rows of the DFT matrix so that its spark equals the maximum possible value

L+ 1. This exposes certain coprimeness conditions that guarantee such a property.

5.1 Introduction

Depending on the method used to acquire the MR image, one can choose an

appropriate transform domain that transforms the MR image into a sparse image

that is compressible. Some such transform domains include Wavelet Transform and

Fourier Transform. The inherent sparsity of the MR images in an appropriately

chosen transform domain, motivates this chapter which is to provide a method for
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designing a compressive sensing measurement matrix by choosing a subset of rows

from the Discrete Fourier Transform (DFT) matrix.

Compressive sensing is a non-adaptive linear projection mechanism that sam-

ples signals at a lower rate than the Nyquist sampling rate. Recently, the compressive

sensing problem has seen a wide variety of applications that include pattern recog-

nition, machine learning, locality selective hashing, processing radar data, sensor

networks, (Magnetic Resonance Imaging) MRI, spectrum sensing in cognitive radio

applications, channel estimation and error correcting codes [31], [32].

A signal N×1 is said to be ”k-sparse” if it can be written as a linear combina-

tion of k <<< n basis vectors. In other words, a signal is k-sparse if N − k elements

of the signal are zero [32].

For the problem set up, consider a k-sparse N ×1 vector x. Let A be a M ×N

(M < N) measurement or sensing matrix. Then the output of the measurement

process defined by A is a M × 1 vector y given by

y = Ax. (5.1)

The measurement matrix A such be such that every k sparse N × 1 vector

x can be recovered from the observed M × 1 vector. As discussed in chapter 1, the

objective here is to design a measurement matrix A such that spark(A) = M + 1.

Recollecting the definition of spark of a matrix, the spark of a matrix is the smallest

number of linearly dependent columns of the matrix. More formally, the spark of a

matrix A is given
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spark(A) = min
s 6=0
||s||0 (5.2)

such that As = 0.

Thus if the spark of a matrix is M , then any subset of M − 1 columns of the

matrix are linearly independent.

5.2 Related Work

The observation matrices are submatrices of the N ×N DFT matrix denoted

by WN . Specifically, with rows and column indices taking values from the set ZN =

{0, 1, · · · , N − 1}, the il-th element of WN is e
j2πil
N . Observe that these are the N -th

roots of unity. We will assume that the observation matrix A(M, N) is obtained

by retaining the rows of WN that are indexed by M ⊂ ZN . The key technical issue

addressed in this paper is: What conditions on M and N ensure that A(M, N) has

full spark?. In this section we summarize some key known results related to this

question.

Suppose for some i and l,M = {i, i+1, · · · , i+ l−1} i.e. contains consecutive

elements of ZN . Define

zn = ej
2πn
N (5.3)

Then the matrix comprising any l columns of A(M, N), indexed by the integers
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i1, · · · , il can be expressed as


1 1 · · · 1
zi1 zi2 · · · zil
...

...
...

...
zl−1i1

zl−1i2
· · · zl−1il

diag {zii1 , z
i
i2
, · · · , ziil}. (5.4)

and being a product of a Vandermonde and a nonsingular diagonal matrix, is thus

non-singular for distinct zin . Consequently, such an A(M, N) has full spark.

A less obvious result can be traced back to Chebotarëv in the early 20th

century, (see [57]).

Theorem 5.2.1 Suppose N is prime. Then for all M ⊂ ZN , A(M, N) has full

spark.

The most sophisticated results are in [58]. As with Theorem 5.2.1 these results

expose the role of prime factors of N and their relation to the set M. The first is a

set of necessary conditions.

Theorem 5.2.2 Suppose for someM⊂ ZN , A(M, N) has full spark. Then so does:

(i) A((M+ i) mod N,N) for all i ∈ ZN , i.e. the full spark condition is preserved

under all translations.

(ii) A(MM, N) for all M that is coprime with N .

(iii) A(ZN \M, N).

This theorem permits one to build entire classes of Mi for which A(Mi, N) is full

spark, from any M for which A(M, N) is full spark.
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The next result of note from [58] requires a definition. Observe a divisor d of

N , partitions ZN into d cosets, the i-th coset being defined as

Ci(d,N) = { l ∈ ZN | l mod d = i} , i ∈ {0, 1 · · · , d− 1}. (5.5)

We say thatM is uniformly distrbuted over the divisor d if for each i the cardinality

of Ci(d,N)
⋂
M is either ⌈

|M|
d

⌉
or

⌊
|M|
d

⌋
.

Then [58] proves the following remarkable theorem.

Theorem 5.2.3 The matrix A(M, N) has full spark only if M is uniformly dis-

tributed over all divisors of N . If N is a prime power then A(M, N) has full spark

iff M is uniformly distributed over all divisors of N .

Furthermore, [58] disproves the conjecture thatM being uniformly distributed

over all divisors of N suffices for A(M, N) to have full spark, regardless of whether

N is a prime power, through the following counterexample.

Example 5.2.1 Consider N = 10,M = {0, 1, 3, 4}. ThisM is uniformly distributed

over 2 and 5. Yet the columns of A(M, 10) indexed by the set {0, 1, 2, 6} are linearly

dependent.

5.3 Some General Results

This section provides two types of results. The first extends a consequence of

(ii) of Theorem 5.2.2 using the following Lemma which can be found in [59].
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Lemma 5.3.1 Consider integers 1 ≤ M < N . Then there exists 1 ≤ n < N such

that N divides Mn iff M and N are not coprime.

Using this lemma we now prove the following theorem.

Theorem 5.3.1 Suppose for positive integers M,K, M = {i, i+M, i+ 2M, · · · , i+

(K − 1)M}, with i+ (K − 1)M < N . Then A(M, N) has full spark iff M and N are

coprime. Further if A(M, N) does not have full spark, then spark(A) = 2.

Proof: Sufficiency follows from the facts that consecutive rows of WN have full

spark, and (i) and (ii) of Theorem 5.2.2.

With n ∈ {0, · · · , N − 1}, under (5.3), the l-th column of A(M, N)) is: al =

zil

[
1 zMl · · · z

(k−1)M
l

]>
Thus with

bl =
[
1 zMl · · · z

(k−1)M
l

]>
and B =

[
b0 b1 · · · bN−1

]

there holds: A(M, N) = Bdiag {zil}
N−1
l=0 . Thus spark(A(M, N)) = spark(B).

Now the Vandermonde structure of B ensures that B has full spark only if for all

0 ≤ p < q < N

zMp 6= zMq . (5.6)

From (5.3) this is equivalent to the nonexistence of an integer l such that

Mq = Mp+Nl

⇔ M(q − p) = Nl.
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As 0 < n = q − p < N , the result follows from Lemma 5.3.1 and the fact that the

violation of (5.6) implies spark(A(M, N)) = 2.

It is evident from Theorem 5.2.2 that using the fact that withM = {0, 1, · · · , K},

the full spark nature of A(M, N) permits the construction of a plethora of subsets

of ZN that yield the full spark property. The hallmark of M = {0, 1, · · · , K} is that

consecutive rows of WN comprise the observation matrix. The rest of the chapter fo-

cuses on the following question: What if a single frame from {0, 1, · · · , K} is missing?

What conditions guarantee full spark observation matrices? These sufficient condi-

tions, together with Theorem 5.2.2 then generate a rich class of further row indices

that guarantee full spark observations. On a related note, observe that Example 5.2.1

also has a missing frame. Our results directly explain why it lacks full spark.

We directly relate the lack of full spark to the notion of vanishing sums of

roots of unity, [60]. The N -th roots of unity, {si}Li=1, si not necessarily distinct, form

a vanishing sum if
L∑
i=1

si = 0, (5.7)

We emphasize that in {si}Li=1, sk may equal sl, even if k 6= l. The Lemma below, from

[60], provides a necessary condition on L for {si}Li=1 to form a vanishing sum. The

lemma refers to nonnegative integer combination of integers pi: r is a nonnegative

integer combination of integers pi if there exist nonnegative integers ni such that

r =
∑
i

nipi.
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Lemma 5.3.2 The possibly nondistinct N-th roots of unity {si}Li=1 form a vanishing

sum only if L is a nonegative integer combination of the prime factors of N . Further,

should L be a nonegative integer combination of the prime factors of N , then there

is always a possibly nondistinct collection of N-th roots of unity {si}Li=1, that form a

vanishing sum.

As will be evident in the sequel, there emerges a new condition for full spark

Fourier submatrices, that involves the integer combination of the prime factors of

N . Towards such a result we first provide a fairly general theorem concerning the

setting where a solitary row is missing from the index set {0, 1, · · · , K}. The theorem

refers to the sum of m-products of a set of complex numbers. This is the sum of the

products of the elements belonging to all subsets of the set with cardinality m. For

example, the sum of 2-products of {a1, a2, a3} is a1a2 + a1a3 + a2a3.

Theorem 5.3.2 For integers 1 ≤ n < K < N and M = {0, 1, · · · , K} \ {n},

A(M, N) does not have full spark iff there exist K distinct N-th roots of unity whose

n-products form a vanishing sum.

Proof: Since it has K rows, A(M, N) does not have full spark iff it has K distinct

columns that are linearly dependent. Suppose these columns are indexed from the

set {n1, · · · , nk} ⊂ ZN . Under (5.3), l-th of these columns comprises the powers zinl ,

i ∈ {0, 1, · · · , K} \ {n}. Thus, their linear dependence is equivalent to the existence

of a nonzero polynomial, θ(z) of degree K with the coefficient of zn zero, whose roots

are znl for each l ∈ {1, · · · , K}. The result follows from the easily verified fact that
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the n-th coefficient of such a nonzero polynomial is, to within a sign, the sum of the

n-products of its roots.

Consider Example 5.2.1 in which N = 10, K = 4, and n = 2. With l ∈

{0, 1, 2, 6}, it is readily checked that the sum of the six 2-products of the zl is indeed

zero.

In view of Lemma 5.3.2, and the pair of facts that the n-products of K distinct

N -th roots of unity are
(
K
n

)
in number, and are themseleves N -th roots of unity, the

following sufficient condition is then immediate.

Theorem 5.3.3 For integers 1 ≤ n < K < N and M = {0, 1, · · · , K} \ {n},

A(M, N) has full spark if
(
K
n

)
is not a nonnegative integer combination of the prime

factors of N .

Again with N = 10, K = 4, and n = 2, Example 5.2.1 violates the sufficient

condition in Theorem 5.3.3 as 6 =
(
4
2

)
is a positive integer multiple of 2, a prime factor

of 10. This Theorem again brings into sharp relief the role played by the prime factors

of N .

Finally, we show that should for 1 ≤ n < K < N , and M = {0, 1, · · · , K} \

{n}, A(M, N) not have full spark, then in fact it has spark even lower than K. To

this end we need a lemma.

Lemma 5.3.3 Suppose a nonzero polynomial with degree K has all its roots on the

unit circle. Suppose also the coefficient of power of zn, 0 < n < K, in this polynomial

is zero. Then so is the coefficient of power of zK−n.
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Proof: Suppose s1, · · · , sK are the roots of this polynomial. The coefficient of zn

is the sum of all n-products of the si. Thus this coefficient is zero iff the sum of all

n-products of the si is zero. Thus this sum divided by
∏K

i=1 si is also zero. As si are

on the unit circle 1/si = s∗i . Thus this ratio is the conjugate of the sum of all the

K − n products of the si. The result follows.

Using this theorem and the proof technique of Theorem 5.3.2 the following

theorem obtains.

Theorem 5.3.4 For integers 1 ≤ n < K < N andM = {0, 1, · · · , K}\{n}, suppose

A(M, N) does not have full spark. Then with M1 = {0, 1, · · · , K} \ {n,K − n},

A(M1, N) does not have full spark either.

5.4 Specialization to the case where N is a product of two primes

Theorem 5.3.2 characterizes conditions under which the full spark condition is

satisfied when a single row is excluded from K consecutive rows of the DFT matrix,

and links it to vanishing sums. Theorem 5.3.3 provides a sufficient condition on, N ,

K and n for the full spark condition to hold. Between them, these two theorems do

not however provide a necessary and sufficient condition on the integers N , K and n.

To partially address this gap we consider the special case where N is the

product of two distinct prime factors, i.e. with p and q distinct primes

N = pq. (5.8)

In this case [60] provides an easy characterization of the N -th roots of unity that
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form a vanishing sum. Specifically, consider the two sets:

Zq = { lq| l ∈ {0, · · · , p− 1}} (5.9)

and

Zp = { lp| l ∈ {0, · · · , q − 1}} . (5.10)

Observe, for any a, b, (see (5.3)),

a
∑
i∈Zq

zi = 0 and b
∑
i∈Zp

zi = 0

Then the sets of possibly nondistinct {zil}Ll=1 that form a vanishing sum obey two

conditions:

(A) For some nonnegative integers α and β the total number L of these zil is αp+βq.

(B) The set {1, 2, · · · , L} can be partitioned into α sets {Spi}αi=1 and β sets {Sqi}βi=1

such that for some integer ri, Spi = ri+Zp and for some integer ti, Sqi = ti+Zq.

In view of Theorems 5.3.2 and 5.3.3, this almost immediately yields the following

result:

Theorem 5.4.1 For distinct primes p and q, integers 1 < K < N = pq, and M =

{0, 1, · · · , K} \ {1} or M = {0, 1, · · · , K} \ {K − 1}, A(M, N) does not have full

spark iff K is not a nonnegative integer combination of p and q.

Observe this theorem exploits the fact that if K numbers on the unit circle

sum to zero, then so do their K − 1 products. Note also that a somewhat surprising
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coprimeness condition has emerged involving the nonegative integer combinations of

the prime factors of N . Further, for N a product of two primes, the condition in

Theorem 5.3.3 is both necessary and sufficient for n = 1 and n = K − 1.

For n > 1, while K < N distinct roots of unity can be chosen arbitrarily, the

n sums in general cannot be. Thus even if
(
K
n

)
is a nonnegative integer combination

of p and q, the n-products of K, N -th roots of unity need not partition in a manner

mandated by (A) and (B) above. Thus for the case when n ∈ {2, 3} we provide a less

conservative than Theorem 5.3.3.

Towards this end, consider the following lemmas whose proofs are in Appendix

A.

Lemma 5.4.1 Consider two primes p and q, integers 1 < K < N = pq, a set of k

distinct integers S = {i0, · · · , iK−1} ⊂ {0, · · · , N − 1}, with i0 = 0 and the integers

mrl = (il + ir) mod N, {il, ir} ⊂ S, il 6= ir.

Consider the set of 2-tuples

I = {{i, l}| 0 ≤ i < l ≤ k − 1} . (5.11)

Suppose one can partition I into sets Ii each having the following properties.

(A) Either |Ii| = q or |Ii| = p.
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(B) The set

Mi = {mlr| {l, r} ∈ Ii} (5.12)

either equals

Zp =

{
lN

p
= lq

∣∣∣∣ l ∈ {0, · · · , p− 1}
}

(5.13)

or equals

Zq =

{
lN

q
= lp

∣∣∣∣ l ∈ {0, · · · , q − 1}
}
. (5.14)

Then there exist nonnegative integers α, β such that:

αp+ βq = k. (5.15)

Lemma 5.4.2 Consider two primes p and q, integers 1 < n ≤ K < N = pq, a set of

K distinct integers S = {i0, · · · , iK−1} ⊂ {0, · · · , N−1}, with i0 = 0 and the integers

m(l1,l2,l3) = (il1 + il2 + il3) mod N, {il1 , il2 , il3} ⊂ S, ilu 6= ilv∀u 6= v.

Consider the set of 3-tuples

I = {{l1, l2., l3}|0 ≤ l1 < l2 < l3 ≤ k − 1}. (5.16)

Suppose one can partition I into sets Ii each having the following properties.

(A) Either |Ii| = q or |Ii| = p.
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(B) The set

Mi =
{
m(l1,l2,l3)

∣∣ {l1, l2, l3} ∈ Ii} (5.17)

either equals

Zp =

{
lN

p
= lq

∣∣∣∣ l ∈ {0, · · · , p− 1}
}

(5.18)

or equals

Zq =

{
lN

q
= lp

∣∣∣∣ l ∈ {0, · · · , q − 1}
}
. (5.19)

Then there exist nonnegative integers α, β such that:

αp+ βq = k. (5.20)

Theorem 5.4.2 Suppose p and q are distinct primes, N = pq, n ∈ {2, 3}, 1 ≤ n <

K < N and M = {0, 1, · · · , K} \ {n}. Then A(M, N) has full spark if K is not a

nonnegative integer combination of the prime factors of p and q.

Proof: Suppose for the purpose of contradiction that A(M, N) does not have full

spark though K is not a nonnegative integer combination of the prime factors of p

and q. Consider Theorem 5.3.2 which is A(M, N) does not have full spark iff there

exist K distinct N − th roots of unity whose n− products form a vanishing sum.

Under (5.3), we know that the n− products translates to n− sums. Thus the indices

form the partitions in Lemma. 5.4.1 and 5.4.2. Thus K is a non-negative integer

combination of p and q leads us to a contradiction.

This is theorem is less conservative than Theorem 5.3.3 as Theorem 5.3.3
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allows
(
K
n

)
to be a nonnegative integer combination of p and q, even if K is not.

5.5 Conclusion

We have derived certain coprimeness conditions that guarantee that full spark

matrices result from appropriate Fourier sampling. In the first result we show that

the rows of WN chosen from the index set {i+nM, i+(n+1)M, · · · , i+(n+L−1)M},

yields a full spark matrix iff M and N are coprime. We then turn to the case where

the index set comprises {0, · · · , K} \ {i} where 1 < i < K. Because of Theorem

5.2.2, the full spark nature of such a set yields several others with the same property.

We show that full spark is equivalent to the existence of K, N -th roots of unity sum

of whose i-products is zero. A sufficient condition is that
(
K
i

)
not be a nonnegative

integer combination of the prime factors of N . We strengthen this result for the

special case when N is the product of two primes and i ∈ {1, 2, 3} by showing that

full spark results if K is not a nonnegative integer combination of p and q.
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CHAPTER 6
SUMMARY AND FUTURE WORK

6.1 Summary

This thesis address the design of optimal sensing matrices in the context of

two cases. The first is the source localization problem where the objective is to find

an optimum sensor geometry in order to locate a source such the underlying Fisher

Information Matrix (FIM) is optimized. The second is the design of a measurement

matrix for compressed sensing in Magnetic Resonance Imaging (MRI).

The specific problems addressed are:

• Optimum sensor placement for source localization in N ≥ 2 dimensions under

log-normal shadowing.

• Energy aware optimum sensor placement for source monitoring in two dimen-

sions under log-normal shadowing.

• Distributed control law for optimum sensor placement for source localization.

• Coprime Conditions for Fourier Analysis for Sparse Recovery for MRI.

Of these, the first problem presented in Chapter 2 is based on the assumption

that the source could be hazardous and thus the sensors need to be sufficiently far

away from the harmful effects of the source. We have assumed that the source location

has a radially symmetric probability density function in a sphere of a given radius.

We have characterized the expectation of the Fisher Information Matrix (FIM) for

optimum sensor placement for source localization in N > 2 dimensions that simul-
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taneously achieves optimality criteria on the minimum eigenvalue, determinant and

trace of the inverse. Our analysis shows that the expectation of FIM needs to be a

scaled identity. We have also proposed a canonical sensor placement solution using

an iterative the placement strategy

xi = Qi−1x1 (6.1)

where Q is an orthogonal matrix and we call it the sensor placement matrix. x1 is the

position of the first sensor on the concentric sphere. While the canonical solution that

we designed for the 2D problem represents optimum spherical codes, the study of 3

or higher dimensional design provides great insights into the design of measurement

matrices with equal norm columns that have the smallest possible condition number.

In Chapter 3, we present a distributed control law that guides the motion of the

sensors on the circumference of circle so that the sensors achieve the optimum sensor

placement for 2-D source localization proposed in Chapter 2. The proposed algorithm

has the least communication overhead. Each sensor communicates with one closest

neighbor node in the clockwise direction and one closest neighbor in the counter

clockwise direction. The proposed algorithm is a modification of the gradient descent

algorithm. The gradient of the cost function is modified to include a repulsion function

between the sensor nodes. This prevents collisions among sensors. We proved the

stability of the proposed distributed control law using Lasalle’s invariance theorem.

In chapter 4, we presented the solution for an energy aware optimum sensor
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placement for source monitoring in two dimensions. The problem was to find an

optimum geometry for the sensors in order to best monitor a source in the worst

case. The worst case in this context being the case when only 3 sensors are active

and the rest are either switched off for energy conservation or have been destroyed

due to extreme environmental conditions. The solutions presented were based on the

assumption that the source is at the origin/ center of a circle and the sensors need

to be placed on the circumference of this circle. The placement was thus an angular

geometry. The FIM is the same as in the case of the source localization problem. The

geometry depended on the number of sensors that were to be deployed. Specifically,

the angular geometry for the even case was different from that of the odd case. This

work dealt with the estimation of a 2 dimensional signal.

In Chapter 5, we derived certain coprimeness conditions which guarantee that

full spark matrices result from appropriate Fourier sampling. In the first result we

show that the rows of Discrete Fourier Transform matrix denoted by WN chosen from

the index set {i+nM, i+ (n+ 1)M, · · · , i+ (n+L− 1)M}, yields a full spark matrix

iff M and N are coprime. We then turn to the case where the index set comprises

{0, · · · , K} \ {i} where 1 < i < K. Because of Theorem 5.2.2, the full spark nature

of such a set yields several others with the same property. We showed that full spark

is equivalent to the existence of K, N -th roots of unity sum of whose i-products is

zero. A sufficient condition is that
(
K
i

)
not be a nonnegative integer combination of

the prime factors of N . We strengthen this result for the special case when N is the

product of two primes by showing that full spark results if K is not a nonnegative
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integer combination of p and q.

6.2 Future Work

An interesting extension of the work in Chapter 2 includes study of optimum

sensor placement for indoor localization where the source location follows probability

density functions that are different from the radial symmetric distribution. Other

interesting fields of extension are the design of optimum deployment strategies for

base station and/or relays for next generation communication networks for improved

energy efficiency, reduced latency and interference. Another interesting problem to

pursue is the placement of high altitude satellites and drones around the earth for

seamless connectivity around the world.

The work in Chapter 3 can be used to develop a discrete time distributed

control algorithm for optimum sensor placement for source localization. The work in

Chapter 2 focused on the estimation of a 2D signal using 3 or more sensors. This

work can be extended to estimation of higher dimensional signals which have several

sensing applications such as seismic tomography, ionospheric tomography to name a

few. Another interesting extension of the work in Chapter 2 would be to consider the

case where the number of sensors that are active denoted by K is more than 3 and

less than N
2

. This work provides insights into the functioning of the network when

half or fewer sensors in the network are active.

Chapter 5 considered the selection procedure for the rows from the DFT matrix

when the size of the matrix is a product of two primes. Interesting future direction
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is to study the case where N , the size of the DFT matrix is a product of more than

2 primes.
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APPENDIX

The derivative of H(Rei) with respect to R is positive for 1 < R <
√

3

Proof:

Consider a density function

fZ(z) = g(‖z‖), ∀z ∈ R3.

In terms of spherical coordinates v = [r, α, β], there holds:

z =

r cosα cos β
r sinα cos β
r sin β

 =

z1z2
z3

 .
The Jacobian is the determinant of

J(v) =

 cosα cos β sinα cos β sin β
−r sinα cos β r cosα cos β 0
−r cosα sin β −r sinα sin β r cos β


Observe:

det

([
cosα cos β sinα cos β
−r sinα cos β r cosα cos β

])
= r cos2 β.

Then unless cos β = 0,

|det(J(v)| = r

∣∣∣∣∣cos β

(
r cos2 β + r sin2 β

[
cosα sinα

] [ cosα sinα
− sinα cosα

]−1 [
1
0

])∣∣∣∣∣
= r2| cos β|
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Thus:

fV (v) = r2| cos β|g(r), ∀z ∈ R3.

We will now examine the integral below with R > 1, focussing on whether it decreases

with R. In the development below we use the substitution, a = sin β.

H(Re3) =

∫ π/2

−π/2

(R− sin β)2

((R− sin β)2 + cos2 β)2
| cos β|dβ

=

∫ π/2

−π/2

(R− sin β)2

((R− sin β)2 + cos2 β)2
cos βdβ (2)

=

∫ 1

−1

(R− a)2

((R− a)2 + 1− a2)2
da (3)

Now observe that:

(R− a)2

(R2 − 2Ra+ 1)2
=

(
a−R

2Ra−R2 − 1

)2

=
1

4R2

(
a−R
a− R2+1

2R

)2

=
1

4R2

(
1 +

R2+1
2R
−R

a− R2+1
2R

)2

=
1

4R2

(
1 +

1−R2

2R

a− R2+1
2R

)2

=
1

4R2

1 +
1−R2

R

a− R2+1
2R

+

(
1−R2

2R

a− R2+1
2R

)2


Thus with

b =
R2 + 1

2R
, (4)
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and c = b− a there holds

H(Re3) =
1

4R2

(
1 +

R2 − 1

R

∫ 1

−1

da

b− a
+

(
1−R2

2R

)2 ∫ 1

−1

da

(b− a)2

)

=
1

4R2

(
1 +

R2 − 1

R

∫ b+1

b−1

dc

c
+

(
1−R2

2R

)2 ∫ b+1

b−1

dc

c2

)

=
1

4R2

(
1 +

R2 − 1

R
ln

(
b+ 1

b− 1

)
+

(
1−R2

2R

)2(
1

b− 1
− 1

b+ 1

))

=
1

4R2

(
1 +

R2 − 1

R
ln

(
b+ 1

b− 1

)
+ 2

(
1−R2

2R

)2
1

b2 − 1

)

=
1

4R2

(
1 + 2

R2 − 1

R
ln

(
R + 1

R− 1

)
+ 2

(
1−R2

2R

)2
1(

R2+1
2R

)2 − 1

)

=
1

4R2

(
1 + 2

R2 − 1

R
ln

(
R + 1

R− 1

)
+ 2

(1−R2)
2

(R2 + 1)2 − 4R2

)

=
1

4R2

(
1 + 2

R2 − 1

R
ln

(
R + 1

R− 1

)
+ 2

(1−R2)
2

(R2 − 1)2

)

=
3

4R2
+
R2 − 1

2R3
ln

(
R + 1

R− 1

)

Now consider

dH(Re3)

dR
= − 9

4R3

+
(R2 − 1)(R− 1)

2R3(R + 1)

R− 1−R− 1

(R− 1)2
+ ln

(
R + 1

R− 1

)
2R4 − 3R2(R2 − 1)

2R6

= − 9

4R3
− 1

R3
+ ln

(
R + 1

R− 1

)
3R2 −R4

R4

= − 13

4R3
+ ln

(
R + 1

R− 1

)
3−R2

R2
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Clearly for 1 < R <
√

(3),

dH(Re3)

dR
> 0. (5)

Proofs of Lemma. 5.4.1

Theorem .0.1 Consider two primes p and q, integers 1 < n ≤ k < N = pq, a set of

k distinct integers S = {i0, · · · , ik−1} ⊂ {0, · · · , N − 1}, with i0 = 0 and the integers

m(l1,l2,..,ln) = (il1 + il2 + ...+ iln) mod N, {il1 , il2 , ...iln} ⊂ S, ilu 6= ilv∀u 6= v.

Consider the set of n-tuples

I = {{l1, ..., ln}|0 ≤ l1 < ... < ln ≤ k − 1}. (6)

Suppose one can partition I into sets Ii each having the following properties.

(A) Either |Ii| = q or |Ii| = p.

(B) The set

Mi =
{
m(l1,l2,..,ln)

∣∣ {l1, ..., ln} ∈ Ii} (7)

either equals

Zp =

{
lN

p
= lq

∣∣∣∣ l ∈ {0, · · · , p− 1}
}

(8)

or equals

Zq =

{
lN

q
= lp

∣∣∣∣ l ∈ {0, · · · , q − 1}
}
. (9)
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Then there exist nonnegative integers α, β such that:

αp+ βq = k. (10)

Proof: To establish a contradiction suppose there do not exist nonnegative integers

α, β such that (16) holds. We will first prove this for 2−tuples and then extend it to

2 < n < k− 1. As 0 ∈ S and every element of S is less than N , S can be partitioned

into the nonempty sets {0}, Sp, Sq and So, such that Sp ⊂ Zp and Sq ⊂ Zq. Further,

every member of Sp is of the form iq for i ∈ {1, · · · , p− 1} and every member of Sq is

of the form iq for i ∈ {1, · · · , q − 1}. Finally, So comprises integers that are neither

mutiples of p nor mutiples of q. By hypothesis its elements are all nonzero and less

than N .

Consider now any element l of So. As 0 ∈ S, and l < N , either l ∈ Zp or

l ∈ Zq. In the former case it is a multiple of q and in the latter case it is a multiple

of p. Thus So is empty.

Next consider np ∈ Sq, for some n ∈ {1, · · · , q − 1} and lq ∈ Sp for some

l ∈ {1, · · · , p− 1}. Now observe that as N = pq and p and q are distinct primes,

(np+ lq) mod N /∈ Zq,

as l < p cannot be a multiple of p. Similarly,

(np+ lq) mod N /∈ Zp
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as n < q cannot be a multiple of q. Thus one among Sp and Sq is empty.

Without loss of generality, assume Sp is empty. Thus S ⊂ Zq. If S = Zq, then

indeed k = q and (16) holds. Thus suppose S 6= Zq. This implies k < q. As 0 ∈ S,

and S ⊂ Zq, there is at least one Mi = Zq.

Now consider two cases.

Case I: Every Mi = Zq. Then for some positive integer m

n−1∏
i=0

(k − i) = mq(n!).

Since q is prime and does not divide k it must divide k − j for some 0 < j ≤ n − 1.

Thus for some positive integer L,

k = Lq + j.

As k < q, L = 0 and k = j ≤ n− 1, contradicting the assumption that k > n.

Case II: ∃ an i for which Mi = Zp. Thus by this assumption ∃ a set of distinct

indies {ui ∈ {1, ..., q − 1}|i ∈ {1, .., n}} ⊂ Sq such that

( n∑
i=1

uip

)
mod(pq) = q (11)

Consequently for some integer M

p

( n∑
i=1

ui −Mq

)
= q.
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This leads to a contradiction since q is a prime number.

This completes the proof for n = 2.

Proofs of Lemma. 5.4.2

Lemma .0.1 Consider two primes p and q, integers 1 < n ≤ k < N = pq, a set of

k distinct integers S = {i0, · · · , ik−1} ⊂ {0, · · · , N − 1}, with i0 = 0 and the integers

m(l1,l2,l3) = (il1 + il2 + il3) mod N, {il1 , il2 , il3} ⊂ S, ilu 6= ilv∀u 6= v.

Consider the set of 3-tuples

I = {{l1, l2., l3}|0 ≤ l1 < l2 < l3 ≤ k − 1}. (12)

Suppose one can partition I into sets Ii each having the following properties.

(A) Either |Ii| = q or |Ii| = p.

(B) The set

Mi =
{
m(l1,l2,l3)

∣∣ {l1, l2, l3} ∈ Ii} (13)

either equals

Zp =

{
lN

p
= lq

∣∣∣∣ l ∈ {0, · · · , p− 1}
}

(14)

or equals

Zq =

{
lN

q
= lp

∣∣∣∣ l ∈ {0, · · · , q − 1}
}
. (15)
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Then there exist nonnegative integers α, β such that:

αp+ βq = k. (16)

Proof: Let us now prove the result for 3 tuples. Consider the index set S. As we

have done earlier, we can partition this set into 4 sets {0}, Sp, Sq and So. Clearly,

from the result for 2-tuples, we know that adding indices from Sp to indices in Sq does

not produce a sum that belongs to either Zp or Zq. Thus one of Sp or Sq is empty.

Without loss of generallity, let Sp be empty. We will now prove that So is empty.

Observe that if |So| ≤ n − 1, one of Sp or Sq must be non-empty. To prove

this assume to the contrary, then |S| = k = n. This contradicts the assumption that

k > n. Case |So| = 1

Suppose for the purpose of contradiction that ∃ a non-zero element l ∈ So. Now

consider the 3−tuple, (0, np, l) for some n ∈ {1, ..., q−1}. Clearly in this case, the sum

of these indices is not a multiple of p. Thus this 3 sum doesnot belong to Zq. Suppose

this 3 sum is a multiple of q. Then ∃ an m1 6= 0 such that (np+ l)modN = m1q. Now

by hypothesis (B), if there eixsts a 3-tuple that produced a sum which is a multiple of

q there exist other 3 tuples that generate the other elements of Zp. Since the indices in

Sq cannot add upto a multiple of q, there must exist another integer ñ ∈ {1, ..., q−1}

such that n 6= ñ and (ñp + l)modN = m2q. Without loss of generality, m1 > m2.

Now consider

(m1 −m2)q = (np+ l)modN − (ñp+ l)modN = ((n− ñ)p)modN (17)
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i.e. for some integer M̃ , we have

L̃ = (m1 −m2)q = p((n− ñ)− M̃q) (18)

Observe that (m1 −m2) < p − 2 and hence is not divisible by p. But from (18) p a

prime factor of L̃. We have arrived at a contradiction since L̃ must have a unique

prime factorization. Thus So is empty.

Case |So| = 2

Let So = {l1, l2}. Observe that one of Sp or Sq is non-empty. Without loss of

generality, we assume that Sq is non-empty. Consider the 3 tuple (0, l1, l2). If the

sum belongs neither to Zp or Zq, we are done. However, if the sum belongs to Zp or

Zq, then consider the 3 tuple e 3− tuple, (0, np, l) for some n ∈ {1, ..., q− 1}. In this

case the analysis is the same as the case, when |So| = 1. Thus So must be empty in

this case too.

Case |So| = 3 and one of Sq or Sp is non-empty.

As earlier, let us assume that Sq is non-empty. Then Sp is empty. Let So = {l1, l2, l3}.

If the sum of these integers is neither in Zp or Zq, we are done. However, if it belongs

to Zp or Zq, then the analysis is simlar to the case with |So| = 2. Thus So is empty.

Case |So| > 3 and both Sp and Sq are empty.

All 3 sums belong to Zp Observe that since n < k, then consider the 3 tuples of

the form (0, li, lj). Specifically consider (0, l1, l2). Let (l1 + l2)modN = mq for some

integer m ∈ {1, ..., p− 1}. Then since l1 + l3 ∈ Zp, ∃ n such that (l1 + l3)modN = nq
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for some n 6= m and n ∈ {1, ..., p−1}. Now consider (m−n)q = (l3− l2)modN . Thus

(l3 − l2)modN is a multiple of q. But (l2 + l3)modN is also a multiple of q. Thus l3

is a multplie of q. We have arrive d at a contradiction.

All 3 sums belong to Zq The proof is the same as above.

Some 3 sums are in Zp and some are in Zq

Consider all 3 tuples that have the indices 0 and l1. Then either all of the 3-sums

of this type of 3-tuples add up to multiples of q (say) or some of them add up to

multiples of p and some add up to multiples of q. Since |So| > 3 and there are only

two distinct prime factors of N , ∃ 2 3 tuples (0, l1, li) and (0, l1, lj) such that l1, li

and lj are disctinct and (0 + l1 + li)modN ∈ Zp, (0 + l1 + lj)modN ∈ Zp. Thus

(li − lj)modN ∈ Zp. Thus we repeat the analysis as above to prove that So is empty.

Thus So must be empty. Thus we have S ⊂ Zq. Thus ∃ atleast one Mi such

that Mi = Zq. As in the earlier case, we have two cases.

Now consider two cases. For n ≥ 2

Case I: Every Mi = Zq. Then for some positive integer m

n−1∏
i=0

(k − i) = mq(n!).

Since q is prime and does not divide k it must divide k − j for some 0 < j ≤ n − 1.

Thus for some positive integer L,

k = Lq + j.



www.manaraa.com

142

As k < q, L = 0 and k = j ≤ n− 1, contradicting the assumption that k > n.

Case II: ∃ an i for which Mi = Zp. Thus by this assumption ∃ a set of distinct

indies {ui ∈ {1, ..., q − 1}|i ∈ {1, .., n}} ⊂ Sq such that

( n∑
i=1

uip

)
mod(pq) = q (19)

Consequently for some integer M

p

( n∑
i=1

ui −Mq

)
= q.

This leads to a contradiction since q is a prime number. This completes the proof for

n = 3.
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